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Abstract

The ability to identify special nuclear material is one of the necessary prevention
mechanisms for preventing proliferation of special nuclear materials. Additionally, if a
nuclear event were to occur, information about the nuclear material used may be
extracted from gamma spectra, provided it is obtained quickly and accurately. This can
be made possible with the use of the exceptional resolution of the HPGe detector.

This experiment applied the Advanced Synthetically Enhanced Detector
Resolution Algorithm (ASEDRA) to a portable HPGe detector’s spectra, to investigate
whether improvements in specificity and sensitivity can be obtained. This method has
been used to improve performance of Nal(Tl) spectra. In this work, measurements of
Cd-109, Co-57, Eu-152, Sb-125, Eu-154, and Eu-155 spectra were used as ground truth
gamma emissions. The HPGe spectra were analyzed using ASEDRA and ORTEC’s
Genie™", a program used by many in the nuclear weapons community for spectroscopy.
Genie" was used as a benchmark for comparison in this experiment. The number of
positive and false positive peaks identified by each program was used for comparison,
based on ground truth peaks, which are the thirty-one known peaks based on the sources
used in the experiment.

The results of this work show that Genie™ always locates more ground truth
peaks than ASEDRA and that ASEDRA identifies fewer false positive peaks than
Genie" at all but three of the measurement times. In addition, the performance parameter
of Genie™" is higher than ASEDRA at short measurement times, implying that ASEDRA

does not provide additional spectral information at shorter measurement times. The



application of ASEDRA to experimental spectra does not provide any improvements in

specificity or sensitivity, as compared to Genie "
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EFFECT OF ADVANCED SYNTHETICALLY ENHANCED DETECTOR
RESOLUTION ALGORITHM ON SPECIFICITY AND SENSITIVITY OF

PORTABLE HIGH PURITY GERMANIUM GAMMA DETECTOR SPECTRA

I. Introduction

1.1 Motivation

The threat of a nuclear attack on domestic soil is a serious concern of the United
States government. Part of this concern is due to the spread of weapons-related
information and technology in recent years, which has increased the capability for a
terrorist to construct a crude nuclear device. Owing to this, the country must be able to
quickly assess the type of weapon used and who employed it if a nuclear event were to
happen. In addition, the major challenge involved in a terrorist attempting to build a
nuclear weapon is the acquisition of special nuclear materials, which requires our nation
to have the ability to accurately trace these materials. This has led to an enhancement in
the nation’s safeguards to prevent such an event from occurring by allowing sources to be
traced, which is a deterrent to states that might provide nuclear materials for such a
purpose. For example, the Domestic Nuclear Event Attribution (DNEA) program
established a policy agenda in which nuclear forensics and attribution capabilities must
be improved to help in determining the state origin of fissile material used in a nuclear
attack [1].

The safeguards mission of the International Atomic Energy Agency (IAEA) is to
give assurance that no declared nuclear material (U, Pu, Th) is diverted to non-peaceful

purposes and that no undeclared nuclear material or activities exist in the United States.



To execute its directive, the IAEA completes independent verification measurements of
nuclear material using an assortment of Non-Destructive Assay (NDA) instrumentation in
attended or unattended mode. This includes High-Resolution Gamma Spectrometry
(HRGS) in addition to Room Temperature Gamma Spectrometry (RTGS) which are also
important safeguard verification tools. Additionally, the IAEA is seeking to use all
available modern technology to enhance its detection capabilities [2].

Prevention mechanisms, such as identification of sources prior to an event taking
place, support the primary goal, but there has to be as much effort put into the response
following the occurrence of such an event. The Pentagon has created a nuclear forensics
team tasked with identifying the attackers should a nuclear weapon be detonated in the
United States. The adaptation of nuclear technology to the forensics of an exploded
nuclear weapon is an established but developing field [3]. In the event of a nuclear
attack, the government will be forced to recover from the attack, while also taking
measures to prevent a second attack from occurring. This is extremely vital because,
although the effects of a nuclear detonation will be detrimental to the country, the worst
thing that could happen after one nuclear attack would be another [4].

1.2 Background

The fallout from a nuclear weapon can be very useful in providing information
about the characteristics of the weapon. This essential information can help answer the
questions about the type of weapon used and who exploded it. The gamma spectra of the
fallout can be measured by using a portable high purity germanium (HPGe) detector.

These detectors are commonly used to detect x-ray and gamma radiation as a result of



their unparalleled resolving power and high photon detection efficiency. High resolution
is favorable in this application because it can allow for distinction between peaks that are
close together, and the high efficiency means short measurement times can be used [5].

Although HPGe detectors have much better resolution than other detectors, such
as the Nal(TI) detector, they still cannot entirely identify every peak present. This can
become problematic when attempting to resolve peaks from fallout. Due to the numerous
nuclides in nuclear fallout, the peaks in the spectra collected are so close together that
discernment of every gamma-emitting isotope present is nearly impossible. The
application of the Advanced Synthetically Enhanced Detector Resolution Algorithm
(ASEDRA) [6] may be able to improve the specificity and sensitivity of gamma spectra
from a HPGe detector. This may allow discrimination of fallout peaks that are close
together. This is essential to nuclear forensics because resolving the fission fragment
peaks allows the identification of the nuclides present; giving insight to what kind of
special nuclear material was used to create the weapon. This information can then be
applied to determine who detonated the weapon. ASEDRA may also be able to decrease
the amount of measurement time needed. This improvement is vital to the nuclear
forensics surrounding the detonation of a nuclear weapon because the time needed to get
a useful measurement would be reduced. This would allow a quicker assessment of
situation at hand, as well as a reduction in the time that personnel and equipment would
have to be exposed to radiation in order to get a measurement that contains enough

spectral information.



In previous work where ASEDRA was applied to Nal(TI) spectra, the
improvements seen in the ability to identify more peaks were referred to as improvements
in the detector’s resolution. The detector’s resolution is defined as the FWHM divided
by the location of the peak centroid and is intrinsic to the detector material. Therefore,
the detector’s resolution cannot be improved by the application of a post processing
algorithm. Based on this fact, this research will refer to improvements in identifying
more peaks as improvements in specificity and sensitivity. Specificity is defined as the
true negative fraction which gives the fraction of peaks that are not identified which
should appear in the spectrum based on the ground truth. Sensitivity is defined as the
fraction of true positive fraction which gives the fraction of peaks that are identified in
the spectrum which are ground truth peaks. These parameters are chosen to be used in
this research because it encompasses the ability for either program to identify true
positive peaks while not identifying false positive peaks which is the essence of what this
research is investigating.

1.3 Hypothesis

ASEDRA has been applied to Nal(Tl) detector gamma spectroscopy and provided
significant improvement to the specificity and sensitivity of the spectra collected by that
detector [6]. Therefore, ASEDRA may be able to improve the specificity and sensitivity
of spectra collected by the HPGe detector. This may be applied to the work of nuclear
forensics in better identifying fission product gamma peaks in a crowded spectrum as

well as decreasing measurement time.



1.4 Research Objectives

1. Develop detector response functions (DRFs) for the HPGe detector using Monte
Carlo N-Particle (MCNP) code.

2. Apply ASEDR,TBM\, using DRFs, and also the gamma spectroscopy and analysis
software Genie ~ to measured spectra.

3. Analyze spectra to determine if sggcificity and sensitivity has improved based on
using ASEDRA versus the Genie = software.

1.5 Scope

This research aims to examine if the application of ASEDRA to spectra collected
with the HPGe detector leads to improvements of the specificity and sensitivity compared
to that of the gamma spectroscopy acquisition and analysis software Genie. Both
programs are used to analyze HPGe spectra from ten separate measurements, each taken
for nineteen different time intervals. Genie™ and ASEDRA both strip the background
from the spectra prior to analysis. The comparison between the two programs is based on
the ground truth, which are the thirty-one peaks that are known based on the sources used
in the experiment. This is done by using the ground truth to compare the number of
positive peaks versus false positive peaks located by each program. This process will be
explained in greater detail in the following chapters. This research only compares
ASEDRA to Genie" and not any other gamma spectroscopy acquisition programs. In
addition, this experiment only examines whether a peak was or was not located and not
the uncertainty in locating that peak.
1.6 Approach

MCNP will be used to model the experimental setup in order to create the DRFs

that will be used in ASEDRA. The DRFs will be created for energies of 20 keV, 50 keV,



100 keV, and every 50 keV thereafter up through 3000 keV. The experiment will be
conducted with a source-to-detector distance of 0.50 m and the sources being used have
gamma energies that range from 45-1597 keV. There will be ten measurements taken in
this configuration with each of the ten measurements consisting of nineteen different
measurement times ranging from 1 to 70560 sec. Once all ten measurements are
completed, the resulting spectra will be imported into both Genie™ and ASEDRA for
analysis to determine the number of positive and false positive peaks identified for each
measurement.
1.7 Paper Organization

This thesis consists of five chapters. The first chapter is an introduction to the
thesis and explains the motivation for the research. It also gives an overview of the
problem being examined and the steps that were taken to investigate the issue at hand.
The second chapter discusses the theory of this research effort with detailed information
about the detector and analysis programs used in this thesis. The third chapter gives a
detailed look at the methodology used in this research. It includes the specifics of the
MCNP generated DRFs in addition to experimental procedures. The fourth chapter
explains the results and analysis of the comparison of Genie™ and ASEDRA. This
chapter compares the application of Genie™ and ASEDRA to correctly locate peaks. The
fifth and final chapter contains the conclusions as well as recommendations for future

work in this area



I1. Theory

2.1 Gamma Spectroscopy

Gamma-ray spectroscopy measures the energy and number of photons emitted by
a radioactive source. This is done by the gamma-ray experiencing an interaction that
transmits some or all of its energy to an electron in the detector material. The three
interactions that play a major role in gamma-ray spectroscopy are photoelectric
absorption, Compton scattering, and pair production. The photoelectric absorption
process dominates at gamma-ray energies up to several hundred keV. The pair
production process dominates at gamma-ray energies above 5-10 MeV. The Compton
scattering process dominates in the range between the photoelectric absorption and pair
production processes. Figure 1 illustrates the relationship of the three interactions as
functions of the absorber material’s atomic number and the energy of the incident photon.
The most favorable interaction for gamma spectroscopy is photoelectric absorption

because the total electron kinetic energy equals the energy of the incident gamma-ray [7].
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Figure 1. Dominant Regions for Gamma-Ray Interactions [7].

Gamma-rays can Compton scatter with an electron in the detector, and the
scattering angle between the incident and scattered gamma-rays determines the energy
deposited into the detector. This relationship is shown by Equation (1) where E. is the
energy of the Compton scattered gamma-ray, 0 is the scattering angle and a = E/Ey in
which E is the incident gamma-ray energy and E, is 511 keV [7].

E
Ec=————
1+a(l—cos 6)

1)
Based on the geometry of the source and detector, there are preferred scattering
angles which produce counts in the spectra at energies less than the full energy peak
(FEP). For small scattering angles there is very little energy transferred, and some of the
original energy is always retained by the incident photon, regardless of the scattering

angle. This is illustrated in Figure 2 where ‘1’ denotes the FEP, ‘2’ denotes the Compton

continuum, and ‘3’ denotes the region of multiple scatters [7].
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Figure 2. Sample Spectrum Highlighting Full Energy Peak and Compton Continuum [7].

2.1.1 The Effects of Ground Scattering

Ground scattering occurs when the incident photon interacts with the ground or a
surrounding material before entering the detector. This causes some of the photon’s
energy to be transferred to that material leaving the photon with less energy when it
enters the detector. This can lead to fewer counts in the FEP and more counts in the
Compton region of the spectrum. The effects of ground scattering have to be addressed
in this experiment, because ground scattering causes the response of the detector to
change. Majer et al. [8] studied the effects of the near-source Compton scattering using a
collimator in front of a planar germanium detector to decrease the near-detector
scattering. Their investigation of effects of near-source scattering in photon spectra
measured with a HPGe detector has demonstrated that a continuous distribution below
the full-energy peak, the shoulder, being the region of multiple scatter, previously
denoted as ‘3’ in Figure 2, is due to Compton scattering with electrons in non-radioactive

source material surrounding the detector sensitive volume. The total numbers of pulses



in the region of the shoulder are approximately proportional to the linear dimensions of
the volume and electron density of the scatterer. The shape of the shoulder depends on
the distribution of scattering centers relative to the source and detector [8].

Majer et al. [9] continued the study of HPGe detector response functions with
improvements to their previous work. The calculations of the shoulder spectra were
improved by considering broadening due to electron momentum distributions in Compton
scattering and double Compton scattering. The only modifications made in
measurements with each of the gamma-ray sources described in this follow-up work were
different orientations of the source plates. The very dissimilar shoulder spectra indicate
that they are generally due to the near-source scattering, in spite of the small masses of
the source plates. Reorientations of the sources produce different distributions of angles
of Compton scattering and different energy distributions of secondary Compton photons
that penetrate the detector. In this measurement better fits were attained than with the
previously reported spectra. The shoulders in the newly measured spectra are also well
explained with the calculated ratios of the numbers of counts in the shoulders and in the
corresponding full-energy peaks being in reasonable agreement with the experimental
ratios.

Uroic et al. [10] set out to reduce the source of scattered radiation into the detector
sensitive volume with the goal of improving the measured spectra. To lessen the near-
source scattering, a very small source of “**Am was prepared along with a shield and two
collimators. There were three principal scattering materials considered in the calculations

of the scattering effects: near-source scattering in Am and neoprene glue, small-angle
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scattering from the collimator edges and lead shield, and large-angle backscattering from
the copper plate located on the inside of the lead shield. Owing to the reduction of the
single-scattering processes, the multiple-to-single-scattering ratio was also reduced.
Therefore, the double and multiple scattering events were negligible and as a result only
the single Compton scattering was calculated. The measurements indicate that in the 25—
100 keV energy range, the quality of the photon spectra measured with HPGe detectors
can be significantly improved if near source scattering effects are greatly reduced. The
use of an extremely small source and collimation has improved the shoulder-to-FEP ratio
by as much as a factor of 10. In addition, the principal cause of non-FEP events is the
near-source scattering. This implies that in the energy range measured, modeling of the
line profile should be source and shield dependent, rather than detector dependent.
Plagnard et al. [11] studied photon-scattering effects in the 15-80 keV low-energy
range with planar and coaxial HPGe detectors. In the low-energy range, spectra shapes
are strongly disturbed by parasitic bumps due to scattered events. These effects are
mainly important in the energy range lower than 60 keV where the FEP and the bump
overlap. This experiment examined the influence of the environment close to the source
in the 20-30 keV energy range. This effect can be decreased by carefully selecting the
geometry and material of the source holder. Furthermore, the implementation of an
adapted geometry with collimators ideally distributed between the source and the detector
allows for a reduction in scattering. However, because the scattering sites depend on
energy, it can be difficult to define an optimum geometry for the whole energy range of

interest.
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The four experiments described in the previous section demonstrate the
significant effect that scattering has on the measured spectra, particularly in the lower
energy range. These results confirm the necessity of considering the effects of ground
scatter in the detector response functions.

2.2 HPGe Detector

Though solid state devices offer many advantages to radiation detection, their
performance is limited by the achievable depletion depth. Silicon or germanium p-n
detectors of normal semiconductor purity cannot achieve depletion depths beyond 2-

3 mm. In order to perform gamma-ray spectroscopy, the thickness of the depletion
region must be larger. The thickness of the depletion region is given by Equation (2)
26V )2
&

~(5) @
where V is the reverse bias voltage, N is the net impurity concentration in the
semiconductor, ¢ is the dielectric constant and e is the electronic charge. At a specific
voltage, the impurity concentration is the only parameter that can be changed to achieve a
greater depletion region. This is accomplished by implementing refining techniques that
reduce the impurity concentration to approximately 10'° atoms/cm®. With this impurity
level, a depletion depth of 10 mm can be obtained for voltages less than 1000 V [7].

The HPGe detector is preferred for the identification of special nuclear material
because of its resolution compared to other types of detectors. Figure 3 depicts the

difference in resolution in several gamma-ray detectors.
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Figure 3. Gamma-Ray Spectra of Natural Background Using Various Detectors [12].

This section demonstrates the advantages of HPGe detectors compared to other
gamma-ray detectors. For the application of identifying special nuclear material, HPGe
detectors are of particular interest because of their outstanding resolution.

2.3 MCNP

MCNP is a general purpose Monte Carlo code that can be used for neutron,
photon, and electron transport. This code treats an arbitrary three-dimensional
configuration of a material in geometric cells bounded by first- and second-degree
surfaces and fourth-degree elliptical tori. The code accounts for incoherent and coherent
scattering, the possibility of fluorescent emission after photoelectric absorption, and
absorption in electron-positron pair production for photons. MCNP generates results by
simulating single particles and recording some characteristics of their average behavior.

The common behavior of particles in the physical system is then concluded from the

13



average behavior of the simulated particles. This is done by using the central limit
theorem, which states that the sampling distribution of a sample’s mean approaches that
of a normal distribution with a mean the same as the population and a standard deviation
equal to the standard deviation of the population divided by the square root of the sample
size, with increasing sample size [13].

In particle transport, the Monte Carlo technique is a method of simulation used
often. It consists of actually following the particles from a source, throughout their life to
their death. Probability distributions are randomly sampled using transport data to
determine the outcome at each step of the particle’s life. Figure 4 illustrates the random

history of a neutron incident on a slab of fissionable material.

Incident
Neutron

Void Fissionable Material

Figure 4. Random History of Neutron in MCNP [13].

In this particular example, a neutron collision occurs at event 1. The neutron is

scattered in the randomly selected direction illustrated. A photon (particle 7) is also

14



produced and temporarily stored for later analysis. At event 2, fission occurs, resulting in
the termination of the incoming neutron and the birth of two outgoing neutrons and one
photon. One neutron and the photon are banked for later analysis. The first fission
neutron is captured at event 3 and terminated. The banked neutron is now retrieved and,
by random sampling, leaks out of the slab at event 4. The fission-produced photon has a
collision at event 5 and leaks out at event 6. The remaining photon generated at event 1 is
now followed with a capture at event 7 [13].

2.3.1 The Use of MCNP

The use of Monte Carlo codes has become essential to the study of radiation
detectors. Owing to this, efficient and accurate Monte Carlo codes need to be available
for use. Vidmar et al. [14] performed a study of the most commonly used Monte Carlo
codes in gamma-ray spectrometry. This was done in order to determine how much the
results of different codes differ from one another when full-energy-peak and total
efficiencies are computed for well-defined sample-detector arrangements. While it was
possible to obtain uniform results from different users of the same code and to a large
extent from different versions of the same code, the disparities between the codes turned
out to be astoundingly large, reaching 10% in some cases at lower energies. The reasons
for those discrepancies continue to be investigated. More favorable results can be
anticipated at higher energies, above 200 keV, and when the codes are used in the
(relative) efficiency-transfer mode in particular, with the differences reduced to 1%. The
statistical uncertainties of the calculated efficiencies were kept at 0.3%. Although there

were some differences between the Monte Carlo codes investigated, none of the codes
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tested, including Monte Carlo N-Particle (MCNP), was deemed to be unacceptable for
gamma-ray detection modeling.

With increased computational power, Monte Carlo simulations of detector
systems have become a complement to experimental detector work. Determining sample
self-absorption corrections or simulating entire in-situ gamma-ray spectrometry
measurements are two such applications. Nonetheless, when calculating the detector
response for HPGe detectors through Monte Carlo simulations, one often observes a
discrepancy between calculated and empirical data. Monte Carlo calculated efficiencies
are typically 10-20% higher than what is found experimentally. This deficiency in the
observed detector efficiency is commonly attributed to uncertainties, often an
underestimation, in the thickness of the dead layer caused by the n+ contact. Therefore,
this thickness is often adjusted in the model to match Monte Carlo calculated efficiencies
with experimental ones [14].

In the work of Boson et al. [15], there were some discrepancies found in some of
the initial Monte Carlo simulations of the HPGe detector. The purpose of the Boson et al.
[15] work was to meticulously study the response of the HPGe detector and to deduce the
cause of any eventual efficiency deficit found. They constructed a model using the
MCNPS5 code which was used to simulate the empirical efficiency calibrations. The full-
energy peak efficiency was determined using the pulse height tally for the same set of
photon energies and angles of incidence that was used for the empirical calibration.
There were a sufficient number of Monte Carlo histories run to ensure a variance in the

estimate below 3%. This experiment resulted in a lower efficiency of the real detector
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compared to the MCNP model. It was determined that this is most likely due to a dead
layer thicker than stated by the manufacturer. The dead layer was estimated to be
approximately 1.5 mm, which was about twice the stated value. This results in both a
thicker absorbing layer as well as a decreased active crystal volume, and is sufficient to
explain the observed decrease in detector efficiency. The Monte Carlo detector model
was then adjusted in accordance with results from the dead layer measurements. The
correction factors that were derived can be used with MCNP, based on manufacturer
supplied data, to accurately reproduce experimental efficiency results [15].

MCNP has also been useful in the comparison of a variety of detectors. In the
work of Ayaz-Maierhafer et al. [16], the absolute total efficiency and the absolute peak
efficiencies for ®°Co, **'Cs and *Am were simulated and compared for common
radiation detection materials. The detectors Nal:Tl, CdZnTe, HPGe, HPXe (High
Pressure Xenon), LaBr;:Ce and LaCl;:Ce were compared relative to a 188.82 cm x 60.96
cm x 5.08 cm polyvinyltoluene (PVT) plastic scintillation detector using MCNP. The
absolute peak detection efficiencies of some detectors were higher relative to PVT,
including the absolute peak detection efficiency of Nal:Tl, HPGe , HPXe , and LaCls:Ce
for all geometries studied. These results show that the gamma-ray spectroscopic
limitation of PVT in portal monitors can be overcome by using other common detector
materials, like HPGe.

MCNP is also being used to predict the response of HPGe detectors in a large
assortment of detector-source geometries. The accurate simulation of germanium

detectors in response to incident gamma rays relies on an understanding of the
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performance of the detector in various detector-source geometries. In the work of Keyser
et al. [17], the efficiency as a function of incident pencil beam gamma rays was measured
for HPGe detectors of various crystal types at different energies. The experimental data
demonstrated that individual detectors can have different sensitivities along the length of
the crystal. These detailed measurements were used to characterize the detector for the
MCNP calculations, in which the result for the peak sensitivities was shown to duplicate
some of the individual detector differences. The detector construction and crystal
particulars are essential before correct MCNP calculations can be completed, although
this, by itself, is not adequate to reproduce the detector response for all environments.
In-situ gamma-ray spectrometry is increasingly used in many applications, such
as geophysical exploration, assessment of doses to the population due to radioactive
fallout, and determination of soil erosion rates employing the **’Cs technique. Portable
gamma spectrometry can be used instead of the conventional method or combined with it,
allowing measurements to be performed more rapidly and thereby wider areas to be
surveyed. The main shortcoming of in-situ spectrometry for soil erosion measurements is
that because the radionuclide depth distribution in the soil is unknown, the calculated
137Cs inventories are uncertain. A solution proposed to overcome this drawback consists
in considering not only the 661.7 keV photopeak count rate but also the peak-to-forward
scatter ratio. In the work of Gutierrez-Villanueva et al. [18], MCNP is used to
approximate **'Cs inventories. The results of their work demonstrate that Monte Carlo
simulations applied to **'Cs inventory measurements by field gamma-ray spectrometry

are an important tool which permits the number of experimental measurements necessary
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to calibrate the method to be reduced. The MCNP code has been confirmed to correctly
duplicate efficiency values and peak-to-forward scatter ratios for a portable HPGe
detector. In addition, the use of Monte Carlo methods allows replicating any density and
soil chemical composition, thereby improving the accuracy of the results.

In the work described in this section, the use of MCNP has been shown to
accurately simulate the response of the HPGe detector in certain controlled situations.
This section has also described the various applications in which MCNP can be used and
how MCNP simulations can become a compliment to some experiments.

2.4 ASEDRA

ASEDRA is used to post-process detector spectra to better “resolve” photopeaks
with high accuracy. The first and critical step in processing a gamma spectrum begins
with a robust noise removal process. This is particularly important for spectra with few
counts because it allows for true features of the spectrum to more easily seen. The
Adaptive Chi-square Processed (ACHIP) algorithm [6] is used to remove noise from the
spectra without removing the important details. This Chi-square analysis establishes
whether a difference between counts in adjacent channels, understood to have
comparable uncertainties, is statistically significant, or if it is truly noise. The criteria of
whether or not the data is “noise” is based on three criteria: (1) a user-specified
significance value, alpha, (2) the number of collected points measured, and (3) the
associated confidence interval allocated to the significance value for the data. The Chi-
square metric computed for actual values n; vs. “expected” modeled values E(n;) in

adjacent channels is shown in Equation (3) [6].
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The ACHIP tool uses a Chi-square basis with the given alpha value for stochastic
noise removal at each data point in a spectrum by parabolic fits. It begins with three
channels, the center one being the channel of interest, where noise is to be removed. The
parabolic model is initially fit to the original three points by means of a least squares fit.
Additional neighboring points are considered, with the data point of interest in the center,
where new parabolic fits for all points are determined. Once the parabolic model for the
data points considered no longer meets the user-specified Chi-square test metric, the
model that just previously satisfied the Chi-Square criteria, using n-1 points fit, is used.
In Figure 5, the left plot is a Monte Carlo pulse height tally and the right plot is the same
tally with noise removal by ACHIP. It is important to note that the significant details of

the spectrum are preserved, and stochastic artifacts are nearly all removed [6].

Detector Spectrum before denoising Detector Spectrum dafter denoising

Figure 5. Spectrum Before and After Application of ACHIP [6].
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In order to use ASEDRA, detector response functions generated by MCNP, have
to be applied. Then the response functions must be broadened to represent responses in
real detector systems. This is accomplished by applying a Gaussian function with a
detector and energy dependent, low energy tailing correction. This is based on a simple
energy-dependent Full-Width-at-Half -Maximum (FWHM) table and energy calibration
file spanning the energies of interest, which are treated by ASEDRA as piecewise linear
functions. ASEDRA begins searching for peaks at the high-energy end of the detector
recorded spectrum, and finds one photopeak at a time. It then subtracts the entire
detector response for that photopeak, as determined by the MCNP generated response
function. This process continues until no further photopeaks can be identified. A flow

diagram of how ASEDRA processes spectra is shown in Figure 6 [6].

Rescale background
— and subtract
from spectrum
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Remainder<—Spectrum
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Report peak AI nollfound
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Done

Figure 6. Flowchart of ASEDRA Processing Spectra [6].
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2.4.1 The Application of ASEDRA

ASEDRA is used to improve the specificity and sensitivity of measured spectra.
LaVigne et al. [6] performed an experiment using a 10 minute measurement of shielded
Weapons Grade Plutonium (WGPu) with a Nal(Tl) detector. A considerable number of
WGPu peaks were extracted by ASEDRA and are shown of the left side of Figure 7.
These peaks were validated by a co-located, calibrated HPGe detector, whose spectrum is

shown on the right side of Figure 7.
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Figure 7. ASEDRA Processed Nal(TI) Spectrum (Left) Identifies 90% of WGPu Gamma Peaks That
HPGe Detector Spectrum (Right) Identifies Using Same Source and Geometry [6].

Initial results illustrate that ASEDRA directly identified numerous Pu gamma
peaks, which correlated extremely well to HPGe results, as designated by the labeled
gamma lines. Preliminary analysis of the results revealed ASEDRA correctly identified

over 90% of the gamma peaks, even those in the low energy region that are too
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complicated to identify using HPGe due to the inherent Compton scattering in similar
regions of the HPGe detector spectrum [6].

Detwiler et al. [19] extended the work of LaVigne et al. [6] by improving the
shielded Pu identification with the application of ASEDRA. In this experiment, spectra
of a WGPu source enclosed in a cylindrical composite metal shield were taken with
Nal(TIl) and HPGe detectors. The ASEDRA peaks and key lines from the HPGe spectra

are shown in Figure 8 [19].

+Identifies at least 4 key WGPu lines (344, 375,414, 450,
662 keV (21 Am)
*Possibly others (299, 322, 450, 479 keV)
«Strongest line identified is the X-ray at 69 keV, also
prominent in the HPGe spectra
«Identifies weaker 54, 110, 140, 197, and 215 keV lines
also seen in the HPGe spectra (58, 109, 138, 191, and 212
keV)
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Figure 8. ASEDRA being Applied to Nal(Tl) WGPu Spectra [19].

The Nal(TI) spectra processed by ASEDRA provided results for WGPu energies
identified to within 1 % and one-half of a FWHM with standard settings and calibration.
The ASEDRA smoothing and fitting of Nal(Tl) spectra generates results similar to that of

a higher resolution detector, with no previous information on the spectra. For side-by-side
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comparisons, the ASEDRA-processed Nal(TI) results found virtually all of the
photopeaks found by the HPGe detector, not including several weaker peaks narrowly
spaced in energy from a more predominant peak. Nevertheless, some weaker lines were
identified by Nal(TI)-ASEDRA and not located by the HPGe detector. The accuracies of
photopeak energies are comparable to those from a detector of 1% resolution for runs
with good statistics [19].

This section shows how the application of ASEDRA improves the specificity and
sensitivity to of the Nal(TI) collected spectra to equal or even better than that of spectra
taken with a HPGe. This work shows that the application of ASEDRA can improve
specificity and sensitivity for Nal(TI) detectors, and the hope is to also improve the same
using HPGe detectors.

2.5 Genie"

Genie™ [20] is a gamma spectroscopy software package with the capability of
acquiring and analyzing spectra. In this experiment, a spectral file is imported into
Genie™, a calibration file is loaded into it, and a peak search routine is applied to the
spectrum.

The calibration file that is loaded into the spectrum is created within Genie". The
calibration file used in this research effort was produced using an energy-only calibration.
This method allows the calibration to be completed by using energy/channel pairs by
either the Cursor or Manual Method. For the Cursor Method, a spectrum must be in the
spectral display area and its cursor must be on the peak that is being used for calibration.

The Cursor button is then selected in order to add that particular channel position to the
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Channel text box. Finally the known energy value must be entered into the Energy text
box to add that data point to the calibration. For the Manual Method, the spectrum does
not have to be displayed in the spectral display area. To add an entry to the calibration
file, an energy value for the peak being used must be entered into the Energy text box and
the corresponding channel number in the Channel text box. This process is completed for
all of the peaks used in the calibration [20].

Genie™ has five algorithms for locating peaks in a spectrum. For this particular
research the VMS Standard Peak Search was used. This method performs a second
difference peak locate followed by a pure Gaussian fit peak analysis. The dependable
determination of the background under a photopeak is very important to this peak search
algorithm. The main contributions to the background are the ambient and the Compton
backgrounds. A third background component is called the “step background” and is
based on the assumption that a gamma-ray can undergo more than one interaction. This
then causes multiple Compton events that have the ability to contribute to channels just
below the photopeak. This “step background” is solved using an analytical formula.

Once the background is accounted for, the algorithm calculates the gross counts in
the peak region, as the sum of the individual channel contents over the entire peak region.
The contribution to the peak area for each channel is then solved for simply using the
gross counts in that channel less the background contribution for that channel. The peak
area is determined to be the sum of the contribution to the peak area for each channel, or
just the gross counts less the background. From the previous values calculated, the

uncertainty in the peak area can then be solved. Lastly, the peak centroid channel is
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determined by using a first moments calculation which includes the contribution to the
peak area for each channel, the peak area, and the channel that defines the left limit of the

peak region [21].
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I11. Methodology

3.1 Determination of Measurement Site

This research began with the determination of the measurement site in which the
least amount of background noise existed. This was done in order to ensure that the
background radiation of the experimental environment contributed as little as possible to
the experimental measurements. This was accomplished by using the HPGe detector to
take overnight background measurements in several labs in Bldg 470 at Wright-Patterson
AFB. The spectra taken in each site were compared to determine which location
provided the smallest amount of background radiation. The shape of all three spectra
were similar and Table 1 shows the counts per second (CPS), over the entire spectrum, at
each of the three locations examined. This preliminary analysis determined the secure

computing room to be the optimal location for measurements in this experiment.

Table 1. Background Measurements of Potential Experimental Locations

Location CPS
Lab 107 47.96
Basement 44.72
Secure Computing Room 38.69

3.2 Calibration of HPGe Detector
The detector used in this experiment was the Ortec® Detective-EX-S portable
HPGe detector. It is a coaxial p-type detector with a 50 mm diameter and 30 mm deep

Ge crystal and low power Stirling Cooler. The detector is shown in Figure 9.
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Figure 9. Ortec® Detective EX-S portable HPGe Detector

A calibration of the HPGe detector was performed using a multi-nuclide source and the
gamma-ray spectroscopy software GammaVision®. The calibration was taken in the
secure computing room with the source at a distance of 15 cm from the front face of the
detector, on axis with the crystal. The measurement of the multi-nuclide source was
taken for 24 hours to make certain that ten peaks would be located in the calibration
spectrum. The 10 peaks from the multi-nuclide source used in this energy calibration are
shown in

Table 2 [22]. The certificate of calibration for the multi-nuclide source is given in

Appendix A.

Table 2. Calibration Gamma-Ray Peaks [22].

Nuclide Energy (keV)

Am-241 59.54
Cd-109 88.03
Co-57 122.06
Ce-139 165.85
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Sn-113 391.70

Cs-137 661.66
Y-88 898.04
Co-60 1173.24
Co-60 1332.50

Y-88 1836.06

The gamma energies from various sources used in this thesis are within 1 keV of one

another, which means the detector calibration should be better than that. To test the

validity of this calibration, measurements were taken with a Eu-152 and a Na-22 source,

with the gamma-ray energies from each nuclide shown in Table 3 [22]. The certificate of

calibration for the Eu-152 and Na-22 sources are given in Appendices B and C.

Table 3. Calibration Verification Gamma-Ray Peaks [22].

Nuclide Energy (keV)

Eu-152 121.78

Eu-152 344.28

Na-22 511.00

Na-22 1274.53

Eu-152 1408.01

It was determined that these measured gamma energies ranged within 0.13-1.59

keV of their known values. This error is too large for this research, so either the

calibration equation has to be adjusted or more points have to be used for the calibration.

Because adding more sources to the calibration meant that there would be fewer sources

to validate the calibration, it was decided that the energy calibration equation needed
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some modifications. There was an attempt to adjust the energy calibration equation in
GammaVision®, but the software did not allow for changes to the energy calibration
equation. The ten point calibration that was generated using GammaVision® was
therefore completed using Genie", a gamma spectroscopy acquisition and analysis
software program. The Genie™ software allowed for the coefficients in the energy
calibration equation to be slightly adjusted for a best fit to the 10 calibration peaks. This
was done in order to allow for the measured gamma energies, from the Eu-152 and Na-22
sources, to range from 0.16-0.26 keV of their known values and the ten gamma energies
from the calibration source to vary from 0.11-0.38 keV of their known values. The

equation for the energy calibration is shown in Equation (4) and plotted in Figure 10.

EnergyCalibration = 0.1502 keV + 0.3656 x Channel 4)
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Figure 10. Genie™ Energy Calibration

30



To make certain that the detector calibration was not affected by any
environmental conditions, 24 hour measurements, were taken using the detector’s Cs-137
test source. Following each measurement, the spectrum was analyzed using the Genie™
software to determine the energy location of the 662 keV peak centroid. This energy is

plotted in Figure 11 for each day a measurement was taken to observe if the calibration

changed over time.
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Figure 11. Percent Changes in 662 keV Peak Locations.

As displayed in Figure 11 the location of the 662 keV peak does drift during the
duration of the experiment, but it does not vary by more than 0.07%. This confirms that
the calibration used throughout the experiment was valid to within that amount.

Throughout the experiment, background measurements were taken to ensure the
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environment of the measurement site stayed consistent for the duration of the experiment.

The background measurements are plotted in Figure 12.
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Figure 12. Percent Changes in Background CPS.

Figure 12 illustrates that the maximum change in the background of the room
used during this experiment was only 1.7%. This minute variation in the background
verifies that the environment in which these measurements were performed did not have
a notable effect on the experimental results.

3.3 MCNP Generated Detector Response Functions

Once the calibration was complete, measurements were taken in the secure
computing room with the multi-nuclide source at various distances. This was done prior
to the main experiment to compare the experimental spectra to those produced by MCNP

and to verify that the two methods, experimental and modeling, matched sufficiently. It
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was also done to investigate if the detector-to-source distances had an effect on the
relationship between the experimental and MCNP generated spectra. There were 6
measurements taken at distances of 15, 35, 50, 65, 80, and 100 cm for counting times of
10, 20, 30, 40, 50, and 60 minutes correspondingly. The same set of measurements was
taken with a Cs-137 source to also compare with the MCNP spectra. It was determined
that there was no significant variation in the spectra among the various distances
examined, so the 50 cm distance was chosen to be used in the main experiment.

In the MCNP simulations, the modeling of the HPGe detector used was
previously completed by MAJ Randall Rockrohr in his work with determining source
position of SNM using the HPGe detector. The source used in the MCNP simulations
was modeled as a point source. To ensure that the experimental source could be modeled
as a point source, the effective solid angle of the detector for a point source and circular
disk source at a distance of 50 cm was calculated. This was done to prove that at this
distance, the experimental source being modeled as a point source is valid by showing
that the effective solid angle of the detector for a point and circular disk source are
essentially the same at this distance. The solid angle for a point source is given by

Equation (5) [7]

Q= 2;;[1—%} (5)

d’+a
where d = 50 cm, the distance between source and detector, a = 2.5 cm, the radius of the
detector, and s = 1.5 cm, the radius of the source. The solid angle for a point source was

calculated to be 0.007839. The solid angle for a circular disk source is given by Equation

(6) [7]
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The solid angle for a circular disk source was calculated to be 0.007834. The
difference in the two calculations was 5.26x10®, 0.07%. This difference in the solid
angle of a point and circular disk source shows that the point source approximation used
in MCNP is valid at a distance of 50 cm, which is the distance used in the main
experiment.

The MCNP simulations were completed with and without a concrete scattering
ground plane to find out which simulation more closely matched with the experimental
setup. The spectra from the two simulations were compared to the experimental
spectrum by inspection of the spectra as well as applying the Pearson Moment Product
Correlation. Pearson’s correlation determines the degree of linear relationship between

the two spectra, where zero is no correlation and one is perfect positive correlation. This

34



Pearson Moment Product Correlation analysis determined that the correlation between
the scattering plane modeled and experimental spectra was 0.4091 and between the
experimental and no scattering plane modeled spectra was 0.3865. The application of the
Pearson Moment Product Correlation demonstrates that the MCNP simulations using the
concrete scattering ground plane resulted in spectra that correlated better with the
experimental spectra than without the scattering ground plane. This comparison is shown

in Figure 13 with the spectra normalized to the same number of peak counts.
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Figure 13. Experimental Spectrum Compared with MCNP Generated Spectra With and Without a
Scattering Plane.

The difference in counts between the experimental and MCNP generated spectra

can be attributed to various mechanisms. The central reason for the differences is that
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MCNP is merely a model. All the characteristics that contribute to an actual HPGe
spectrum are not able to be coded in the model, making MCNP not able to completely
duplicate the experimental spectrum. It is important to note that although MCNP
simulation results in fewer counts in the spectrum than the experimental spectrum, the
MCNP generated spectrum has the same shape as the experimental spectrum which is
essential for using MCNP to create the DRFs.

All of the previous MCNP runs were completed using the thick-target
Bremsstrahlung model (TTB) because of the substantial amount of computational time
required using the full physics package. The TTB model produces electrons, but assumes
that they are locally slowed to rest. The electrons that are not transported produce
Bremsstrahlung photons, which inherit the direction of the parent electron, and are then
banked for later transport. Consequently, electron-induced photons are not ignored, but
the time expensive electron transport step is omitted [13].

To establish whether the full physics package is necessary in this experiment, an
MCNP simulation of the Cs-137 source at 50 cm was completed using the full physics
package. This simulation was then compared to that using the TTB model to determine if
the information gained was worth the computational time to complete the simulation.
The MCNP simulation of the Cs-137 source at 50 cm using the TTB model took 45
minutes, whereas the same simulation using the full physics package took 15 hours. The
results of using the full physics package compared with the TTB modeled spectra are

shown in Figure 14.
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Figure 14. Full Physics Package Spectrum Compared With TTB Modeled Spectrum.
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To verify if the TTB modeled spectrum indeed gives the same results as the full
physics model spectrum, statistical analysis was completed on both spectra. The Pearson
Moment Product Correlation was applied to test the correlation between the TTB and full
physics modeled spectra. Pearson’s correlation determines the degree of linear
relationship between the two spectra, where zero is no correlation and one is perfect
positive correlation. This Pearson Moment Product Correlation analysis determined that
the correlation between the TTB and full physics modeled spectra was 0.99996, which is
practically perfect correlation. In addition to the Pearson Moment Product Correlation
analysis, the difference between counts in each energy bin was calculated and is plotted
in Figure 15. This illustrates that the difference between the TTB and full physics

modeled spectra is miniscule as can be seen by the slight variations above and below
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zero. Also, the mean of the differences was calculated to be 0.000775 which further
demonstrates that the spectrum using the full physics package closely resembles the
results of the TTB model. This led to the decision to only use the TTB model because of

the computational time that would be saved, nearly fourteen hours per simulation.
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Figure 15. Difference in Counts between TTB and Full Physics Modeled Spectra.

The DRFs generated in MCNP all have a detector-to-source distance of 50 cm. In
addition, they all have a concrete scattering plane and use the TTB model. The DRFs
also have an energy cutoff of 1 keV, so that gammas below that energy would be
disregarded. The DRFs use energy bins of 1 keV and were created for energies of 20

keV, 50 keV, 100 keV, and every 50 keV thereafter up through 3000 keV, as required by
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the current version of ASEDRA. A sample MCNP DREF input file is shown in
Appendix D.
3.4 Experimental Setup

The sources used in this experiment were solid samples of Cd-109, Co-57, Eu-152
and solutions of Sb-125, Eu-154, and Eu-155. The certificates of calibration files for
these sources are given in Appendices E, F, C, and G respectively. All measurements
were performed in the secure computing room with the sources 50 cm from the detector.
Figure 16 shows how the sources were mounted on a wooden block in order for the

center of the detector to be in line with the sources.

Figure 16. Experimental Setup.

The same sets of measurements were taken ten different times in this

configuration. Each of the 10 measurements consisted of 19 various measurement times;
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70560, 7200, 3600, 3000, 2400, 1800, 1200, 600, 300, 180, 60, 50, 40, 30, 20, 10, 5, 3,
and 1 second. The spectra from one set of measurements are shown in Appendix H.

As well as the measurements taken with all sources, there were five sets of
measurements taken with only the solution of the Sb-125, Eu-154, and Eu-155 sources.
This was done because the sources in the solution were much weaker than the Co-57,
Eu-152, and Cd-109 sources and it needed to be determined which peaks were actually
measured when the solution was measured alone. The 5 measurements of the solution
were all taken for the same 19 time intervals that were used with the measurements of all
the sources.

3.5 Explanation of Comparison Parameters

Following the experimental measurements, the spectra collected were analyzed
using Genie" and ASEDRA. To apply these programs to the spectra, a few parameters
had to be defined in order to provide a baseline for comparison. The ground truth is
defined as the 31 peaks that are present in the spectra based on the sources used in the
experiment and are shown in Table 4 [22]. The probability per decay for each of the
ground truth gamma-ray peaks are given in Appendix I [23].

The number of positive peaks that either program identifies is defined as the
number of peaks the program identifies that are ground truth peaks. The number of false
positive peaks that either program identifies is defined as the number of peaks that are not
ground truth peaks that the program identifies. To ensure that each program is applied
with its optimal conditions, the parameters of both Genie™ and ASEDRA were optimized

for each time measurement. This provided a commonality between the two programs for
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using the number of positive and false positive peaks found as a comparison. Genie™ is
used in this experiment as a benchmark for comparison to ASEDRA. The goal of this
experiment is determine if ASEDRA provides improvements to specificity and sensitivity
and that is accomplished by comparing ASEDRA to the benchmark. The optimization

process for both Genie™ and ASEDRA is explained in the next two sections.

Table 4. Ground Truth Gamma-Ray Peaks [22].

. Ener Ener
Nuclide (ke\/g)y (ke\/g)y
Eu-155 4530 | Eu-152 778.89
Eu-152 4540 | Eu-152 867.32
Eu-155 86.55 | Eu-154 873.19
Cd-109 88.03 | Eu-152 964.01
Eu-152 121.78 | Eu-154 996.32
Co-57 122.06 | Eu-154 1004.80
Eu-154 123.07 | Eu-152 1085.80
Co-57 136.48 | Eu-152 1089.70
Eu-152 244,69 | Eu-152 1112.00
Eu-154 24794 | Eu-152 1212.80
Eu-152 344.28 | Eu-154 1274.44
Eu-152 411.11 | Eu-152 1299.00
Eu-152 443.98 | Eu-152 1408.01
Eu-154 692.41 | Eu-154 1593.00
Eu-154 723.30 | Eu-154 1596.50
Eu-154 756.87

Nuclide

3.6 Genie" Optimization and Implementation

To determine the optimal settings for Genie ", the number of positive peaks was
maximized, and the number of false positive peaks minimized. The Genie™ parameters
adjusted to do so were the Peak Search Sensitivity (PSS) and the Gaussian Sensitivity

(GS). The PSS is the number of standard deviations above background a feature must be
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to be considered a peak. The GS determines how close to a pure Gaussian shape a peak
should be.

The optimal settings for these parameters were determined for each time
measurement, from one set of measurements with the background removed. The PSS
was initially set at 3 and held constant while the GS varied from 1 to 40. The number of
positive and false positive peaks was recorded for each GS value. After this was
completed a threshold analysis was utilized to verify which GS value maximized the
number of positive peaks while minimizing the number of false positive peaks. The
threshold analysis consisted of examining how the quantity of positive and false positive
peaks changed with varying values of the GS and determining the threshold at which the
number of positive peaks was at the greatest number it could be while continuing to keep
the amount of false positive peaks at a minimum. The PSS was then varied from 1 to 40
while the GS was kept constant. The number of positive and false positive peaks was
evaluated for each PSS value. The threshold analysis was then applied to verify the value
of PSS that maximized the number of positive peaks while minimizing the number of
false positive peaks. Once the best PSS value was found, the entire data set was again
analyzed while varying the GS from 1 to 40 to see if there is a better GS value based on
the PSS value. This entire process was repeated until the optimal GS and PSS parameters
were established for each time measurement. The result of this process is shown in

Table 5.
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Table 5. Genie™ Peak Search Sensitivity and Gaussian Sensitivity Optimal Settings

Time Measurement Peak Search Gaussian

(sec) Sensitivity Sensitivity
1 1 10
3 2 10
5 2 10
10 2.3 10
20 2.8 10
30 3 10
40 4 10
50 3 30
60 2.8 13
180 3.2 1
300 3.9 10
600 3.1 14
1200 3.3 15
1800 35 5
2400 3.8 15
3000 4 30
3600 5 40
7200 6 10
70560 18 10

3.7 ASEDRA Optimization and Implementation

To establish the optimal settings for ASEDRA, the quantity of positive peaks was
to be maximized while minimizing the number of false positive peaks. The ASEDRA
parameters modified were the peak aliasing and alpha. The peak aliasing factor allows a
sweeping of the spectra, aliasing peaks that are too close to other central peaks. This
allows for small incidental peaks to be removed and summed into a neighboring “locally
dominant’ peak. The aliasing factor defines the number of FWHM widths, at a particular
energy, considered surrounding above or below prominent peaks. The alpha factor
controls the performance of adaptive ACHIP denoising. As the value of alpha is

decreased, the denoising increases.
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To determine the best settings for these parameters, a similar process as described
for the Genie' optimization was completed. The peak aliasing was initially set at 1 and
was held constant while alpha varied from 0 to 1. The number of positive and false
positive peaks found was recorded for each alpha value. After this was finished a
threshold analysis was employed to find which alpha value maximized the number of
positive peaks while minimizing the quantity of false positive peaks. The threshold
analysis consisted of examining how the number of positive and false positive peaks
changed with varying values of the alpha and resolving the threshold at which the number
of positive peaks was at its greatest amount while continuing to keep the number of false
positive peaks at a minimum. The peak aliasing was then varied from 0 to 100 while
alpha remained constant. The quantity of positive and false positive peaks was
determined for each peak aliasing value. The threshold analysis was then applied to
establish the peak aliasing value that maximized the number of positive peaks while
minimizing the number of false positive peaks. Once the best peak aliasing value was
found, the process was repeated using that peak aliasing value and varying alpha from 0
to 1 again, to verify if there is a better alpha value based on the new peak aliasing value.
This complete process was repeated until the optimal alpha and peak aliasing parameters

were established for each time measurement. This is shown in Table 6.
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Table 6. ASEDRA Peak Aliasing and Alpha Optimal Settings.

Time Measurement Peak

(sec) Aliasing Alpha
1 0.10 no denoising
3 0.10 0.006
5 0.10 0.085
10 0.19 0.995
20 0.45 0.015
30 0.45 0.995
40 0.45 0.995
50 0.50 0.500
60 0.45 0.006
180 0.50 0.022
300 0.50 0.100
600 0.50 0.007
1200 0.80 0.005
1800 0.70 0.008
2400 0.60 0.006
3000 0.50 0.006
3600 1.00 0.020
7200 0.95 0.008
70560 1.00 0.006
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IV. Results and Analysis

4.1 Application of Genie" Results and Analysis

Using the optimal settings, Genie" was used to process the spectra from the ten
measurements at all nineteen measurement times and positive and false positive peaks
recorded. The Genie" peak analysis report that is generated gives an abundance of
information concerning the peaks as shown in Appendix J. Sample Genie™ Peak Analysis
ReportAppendix J. However, for this analysis only the number of peaks located and the
energy at which those peaks are located was used. This is because the objective of this
research was to determine if the application of ASEDRA resulted in improvements in
specificity and sensitivity. To achieve this objective, the ability to apply ASEDRA to
locate ground truth peaks was benchmarked by comparing it to Genie™.

In order for one of the Genie™ located peaks to be considered a positive peak, its
energy was required to be within 2% of the ground truth energy, as shown in Table 4.
This parameter was chosen as a metric to establish which peaks are in-fact ground truth
peaks and as a way to consistently define positive and false positive peaks for the
duration of the analysis. This 2% metric was based on several factors, the first and most
important being that the largest resolution of the HPGe detector is approximately 2%.
Next, the energy calibration ranged from 0.11-0.38 keV, 0.02-0.22%, of their known
values, so the metric establishing whether or not a peak was considered to be a ground
truth peak needed to be greater than this. Lastly, the change in the calibration and
experimental background only varied by 0.07 and 1.7% respectively throughout the

experiment, which supports using the 2% metric to determine which peaks are ground
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truth peaks. By means of this 2% bound, positive peaks are located in the spectra from
the 10 measurements at all 19 measurement times. The compilation of this data is shown
in Table 7 where “x’ denotes that a ground truth peak for that row was located, in at least

5 of the 10 measurements, at that particular measurement time.

Table 7. Genie™ Located Peaks based on all Ten Measurements.

Measurement Time (sec)

Nuclide E&—E}g"—- 1]3(5/10(20|30(40|50(60(180300{600(1200{1500|2400|3000[3600|7200|7056
Eu-155 | 45.30

Eu-152 | 45.40 Xl x| x| x Xl x| x| x X
Eu-135| 86.35 X X X X X
Cd-109 | 88.03 |x|x|x| x| x|=x|=x|=x|=x|=x|x|x]| x| x x x| x X x
Eu-132 | 12178 |x|x|x|x [ x|[x|=x|=x|=x| x| x| x| x| x X x| x X b4
Co-37 | 122.06

Eu-154 | 123.07

Co-37 | 136.48 x| x| =x=x|=x|x]|x|x|x] x| x x x | x X X
Eu-132 | 244.69 lxlx|x|x|x|x|x|x|x| x| x| x X X | x X X
Eu-154 | 247.94 x| x x x| x X x
Eu-152 | 34428 |x|x|x|x | x|x|=x|=x|=x|=x|x| x| x| x X X | x X X
Eu-152 | 411.11 Xx|x|x|x|x|x|=x|=x| x| x X x| x X X
Eu-152 | 443.98 XH|x|x|=x|=x|x|x|x]| x| x Xl x| x| x X
Eu-154 | 692.41 x| x| x x x | x X X
Eu-134 | 723.30 x| x| x X X | x X X
Eu-154 | 756.87

Eu-152 | 775.89 x| x === |x|x|x|x] x| x b4 x| x X X
Eu-152 | 867.32 Xx|lx|x|x|x|=x|=x| x| x X x| x X X
Eu-154 | 873.19 x | x x x X X
Eu-1532 | 964.01 X x=xx|=x|=x|x|x|x] x| x X x| x X b4
Eu-154 | 996.32 x| x x x| x X x
Eu-154 |1004.50 x| x| x| x| x X x| x X X
Eu-152 |1085.80 X x| x|x|x|x|x|=x]x|x|x X x| x X X
Eu-132 |1089.70 X| x| x| x| x X X | x X X
Eu-152 |1112.00 x| x| x|x|x|x|x|=x] x| x|x x x | x X X
Eu-152 |1212.80 x| x| x| x| x X X | x X X
Eu-154 |1274.44 x| x| x| x| x b4 x| x b4 b4
Eu-152 [1299.00 Xl H| x| x| x Xl x| x| x X
Eu-152 |1408.01 X x| x|x|x|x|x|=x]x|x|x X x| x X X
Eu-154 |1593.00

Eu-154 [1596.50 X
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In order to determine the trends in the number of positive and false positive peaks
that Genie™ identifies, the average number of peaks found in each of the ten
measurements was taken. Along with that, the average deviation was calculated for each
time measurement as shown in Equation (10). This average deviation gives the average
of the absolute values of the deviations of the data points from their mean and is a

measure of the variability in the data set.
L3 |x-x (10)
n

The average number of positive peaks that Genie™ found at each measurement

time is plotted in Figure 17 with the error bars indicating the average deviation.
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Figure 17. Genie" Located Positive Peaks.

Figure 17 illustrates that the number of positive peaks increases as the
measurement time is raised. It also shows the 1 second measurement time locating the
minimum average number of positive peaks at 4.3, and at the 70560 second measurement
time Genie " identifies the maximum average number of positive peaks, that being 25.9
out of the possible 31 ground truth peaks. This behavior is expected due to the ability to
collect additional spectral information as more detection time is allotted. The average
deviation remains very small for all time measurements with 0.36 being the smallest and
occurring at the 70650 second time measurement and 1.14 being the largest taking place

at the 5 second time measurement. This demonstrates that the number of Genie" located
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positive peaks do not vary significantly between the 10 separate measurements that were
taken.
The number of false positive peaks identified using Genie™ was also examined

and is plotted in Figure 18 with the error bars indicating the average deviation.
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Figure 18. Genie™ Located False Positive Peaks.

Figure 18 shows a general trend of increase in the quantity of false positive peaks
that Genie™ locates as the measurement time becomes longer, especially after about 100
seconds. In addition, the minimum and maximum average number of false positive peaks
is 0.2 at the 40 second time measurement and 25.3 at the 70560 second time

measurement. This behavior is slightly different than that of the positive peaks that
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Genie™ locates, given that the minimum average number of false positive peaks found is
at the 40 second measurement, instead of the 1 second measurement for the positive
peaks. This can be attributed back to adjusting the Genie™ parameters to achieve the best
performance. This required occasionally accepting more false positive peaks in order to
get additional positive peaks, as shown in the time measurements below the 40 second
time measurement. The average deviation stays fairly small for the time measurements at
and below 300 seconds and at 70560 seconds. The average deviation in the measurement
time range of 600 to 7200 seconds is somewhat larger. The smallest average deviation is
0.32 and occurs at the 40 second time measurement and 3.34 is the largest taking place at
the 2400 second time measurement. This demonstrates that the number of Genie™ located
false positive peaks demonstrate the most variance in the time measurement range of 600
to 7200 seconds.

In order to conclude the analysis of the peak finding capability of Genie™ and
compare it to the capability of ASEDRA, a metric was implemented that included both
the positive and false positive peaks. This is accomplished by applying Equation (11) to

each time measurement.

PerformanceParameter — # PositivePeaks — # FalsePositivePeaks (11)

#GroundTruthPeaks

The best performance of Genie™" consists of finding all of the ground truth peaks
while not locating any false positive peaks. When this occurs the performance will be

equal to 1. The closer the performance parameter is equal to 1, the better that Genie" is
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performing. Also, when the performance parameter goes negative, the number of false
positive peaks is exceeding the number of positive peaks which signifies that Genie™ is
not performing very well. The performance parameter of Genie' at all 19 time

measurements, calculated for each of the ten measurements then averaged, is illustrated

in Figure 19.
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Figure 19. Genie™ Performance.

Figure 19 shows that the best performance of Genie is 0.47 which occurs at the
300 second time measurement and the worst performance of Genie™ is 0.02 which takes
place at the 2400 second time measurement. Genie" working the best at the 300 second
time measurement is reasonable based on the longer counting time which allows for a

reasonable number of peaks to be seen without being so long that artificial peaks begin
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emerging. The poorest performance of Genie™, which occurs at the 2400 second time
measurement, can be attributed to the large number of false positive peaks that appear
due to the longer counting time. The trend on the performance of Genie™ does not just
simply increase or decrease in relationship with the measurement time. The trend starts
off with the performance increasing with counting time, but after the 300 second
measurement, the performance starts to decrease. This decline in performance continues
until it bottoms out at the 2400 second measurement. The performance then begins to
increase again up until the 3600 second measurement time at which it drops yet again for
the 7200 measurement and stays constant for the 70560 second measurement.

Overall the performance of Genie™ is the best at the middle measurement times
and worst at the short and long measurement times. The largest average deviation for the
performance is 0.12 and occurs at the 1800 second measurement with the smallest
performance average deviation being 0.02 and happening at the 40 second measurement.
These variations in the average deviation are based on the counting times. Figure 19
illustrates the average deviation being small at short and the longest counting times, and
being large in between.

4.2 Application of ASEDRA Results and Analysis

The optimal settings established for ASEDRA were applied to the spectra from
the 10 measurements at each of the 19 various measurement times. The peak analysis
report that ASEDRA produces provides only the energy at which the peak occurs and the
number of counts in that peak as shown in Appendix K. In this analysis, the energy at

which the peak is located is the only piece of information provided and used. For an
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ASEDRA located peak to be considered a positive peak, its energy has to be within 2%
of the ground truth energy as shown in Table 4, just as in the case with Genie". Using
this 2%, the number of the positive peaks was determined and these results are shown in

Table 8.

Table 8. ASEDRA Located Peaks based on all Ten Measurements.

Measurement Time (sec)

_\'ucﬁdem 1/3|5/10|20(30 40(50|60(180(300/6001200(1300[2400/200013600(7200/7056

(keV)
Eu-155| 45.30

Eu-152| 45.40 X X X
Eu-155| 86.55
Cd-109| §5.02 X x|x|x|x|x|x|x|x]| x X | x| x| x X X

th|tm

Eu-132|121.78 = |=|x| x| x| x| =[x | x| x| x| x| x X | x| x| x b4
Co-57 | 122.06 x|x| x
Eu-154|123.07
Co-57 | 136.48 X x| x|x|x|x|{x|x|x| x| x| x
Eu-132| 244.69 X || x| x|=x|x|x|x|=x
Eu-154|247.94
Eu-152|344.28 ixlx|x|x|x|x|x|x|x
Eu-152|411.11 X R | X
Eu-152| 443,98 X R | X
Eu-154| 692.41
Eu-154| 723.30
Eu-134| 756.87
Eu-152| 778.89 Xlx|x|x|x|x|x| x
Eu-132| §67.32 Xl x || X x| X
Eu-154| §73.19
Eu-132| 964.01 X x|x|x|x|x
Eu-154| 996.32
Eu-154|1004.80
Eu-152|1085.580 x| x|[x|x|x
Eu-132|1089.70
Euw-152|1112.00 X|x[x|x|x|x
Eu-152|1212.80
Eu-154|1274.44
Eu-152|1299.00
Eu-152|1408.01 X|x|x|x|x|x|x
Eu-154|1593.00
Eu-154|1596.50 X
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In order to calculate the number of positive and false positive peaks identified
using ASEDRA, the average of the 10 measurements was taken. In addition, the average
deviation is calculated for each time measurement as given in Equation (10). The
average number of positive peaks that ASEDRA locates for each time measurement is

plotted in Figure 20, with the error bars indicating the average deviation.
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Figure 20. ASEDRA Located Positive Peaks.

Figure 20 shows a general trend of the average number of positive peaks
increasing as the measurement time is increased. The minimum average amount of
positive peaks that ASEDRA locates is 1 at the 1 second measurement and the maximum
average number of peaks that ASEDRA can locate is 24.6 at the 70560 second

measurement. This behavior is anticipated based on the increased detection time
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providing extra spectral information. The average deviation stays small for all the time
measurements where the smallest is 0 and occurs at the 3 second time measurement and
the largest is 0.96 and occurs at the 600 second time measurement. This reveals that the
number of positive peaks identified using ASEDRA locates does not have much variation
among the ten separate measurements that were taken.

The average number of the false positive peaks that ASEDRA located is shown in

Figure 21 with the error bars again signifying the average deviation.
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Figure 21. ASEDRA Located False Positive Peaks.

Figure 21 illustrates a trend of an increase in the number of false positive peaks

that ASEDRA locates as the measurement time is raised, especially after about 100

56



seconds. The minimum and maximum average number of false positive peaks that
ASEDRA locates is 0 at the 1, 3, 5 and 20 second time measurements and 36.9 at the
70560 second time measurement. This behavior follows that of the positive peaks that
ASEDRA locates, given the increase in located peaks with the addition of measurement
time. This can be attributed to the additional spectral information gained with more
detection time. The average standard deviation remains rather small for the time
measurements at and below 60 seconds and at 1200 seconds. The average deviation, in
the measurement time range of 180 to 7200 seconds is slightly larger and is the greatest at
the 70560 time measurement. The smallest average deviation is 0 and occurs at the 1, 3,
5, and 20 second time measurements and 4.9 is the largest taking place at the 70560
second time measurement. This shows that the false positive peaks ASEDRA located
have the most variance in the range of the 180 to 70560 second time measurements, for
the 10 separate measurements that were taken.

The performance of ASEDRA was calculated by applying Equation (11), which
was also applied to determine the performance of Genie™. The best performance of
ASEDRA is based on locating every ground truth peak while not finding any false
positive peaks. When this takes place the performance parameter will be equal to 1. The
closer the performance parameter is to 1, the better ASEDRA is performing. In addition,
when the performance parameter becomes negative, the quantity of false positive peaks
are greater than the number of positive peaks which indicates that ASEDRA is not
performing well. The average performance of ASEDRA at each of 19 time

measurements is illustrated in Figure 22.
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Figure 22. ASEDRA Performance.

Figure 22 illustrates that the best performance of ASEDRA is 0.52 which takes
place at the 1200 second time measurement and the worst performance of ASEDRA
is -0.40 which occurs at the 70560 second time measurement. The fact that ASEDRA
performs the best at the 1200 second time measurement is sensible because the longer
counting time results in a larger number of positive peaks without a significant increase
in false positive peaks appearing. The 70560 second time measurement has the poorest
performance for ASEDRA. Because this is the longest measurement time, one might
think it would provide the best performance because it will give the most spectral
information. Although this is true, it also offers the possibility for more false positive

peaks to appear which is the sole reason why ASEDRA performs the worst at this time
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measurement. The performance trend of ASEDRA does not just increase or decrease
with relation to the measurement time. The behavior of the performance begins with the
performance increasing as counting time goes up, to a maximum at the 1200 second time
measurement. The performance then starts to decrease and continues declining until the
70560 time measurement.

In general the performance of ASEDRA is the best at the middle measurement
times and worst at the short and long measurement times. The largest average deviation
for the performance is 4.9 and happens at the 70560 second measurement with the
smallest performance average deviation being 0 and taking place at the 1, 3, 5, and 20
second measurement times. These variations in the average deviation are based on the
counting times, with the smallest occurring at short measurement times and the longest
happening at the long measurement time.

4.3 Comparison of Genie™ and ASEDRA Results

This section will compare and contrast the application of Genie" and ASEDRA to
the experimental spectra. The optimal settings are being used to compare the application
of both methods. This provides a standard of comparison for the two programs. The
number of positive peaks that each program locates is shown in Figure 23. This value is
the average of the 10 measurements. Also, the error bars indicated the average deviation

for each measurement.
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Figure 23. Genie" and ASEDRA Located Positive Peaks.

As illustrated in Figure 23, both programs demonstrate the same trend in which
they locate more positive peaks as the measurement time is increased, a behavior which
is expected. Figure 23 also shows that Genie™ locates more positive peaks than
ASEDRA at every measurement time. The average maximum number of peaks that
Genie™ finds is 25.9, whereas for ASEDRA it is 24.6. The average deviation for both
Genie™ and ASEDRA are small for all time measurements, but Genie™" has a larger
average deviation than ASEDRA for most of the measurement times. This demonstrates
that more variation occurs between the 10 measurements when applying Genie™ versus

ASEDRA.
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The number of Genie™ and ASEDRA false positive peaks was also examined.
The results are illustrated in Figure 24 with the error bars again signifying the average

deviation from 10 measurements.
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Figure 24. Genie" and ASEDRA Located False Positive Peaks.

Figure 24 shows an increase in the false positive peaks that are found as the
measurement time is raised for both Genie™ and ASEDRA. This behavior is expected
because of the added spectral information that comes along with longer detection times.
Figure 24 illustrates that Genie™" finds more false positive peaks than ASEDRA at every
measurement time except the 40, 50, and 70560 second measurement times. The
maximum average number of false positive peaks that Genie™ locates is 25.3, whereas

for ASEDRA it is 36.9. The average deviation for both Genie™ and ASEDRA are small
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for the shorter measurement times and becomes larger as the measurement time is
increased. Generally speaking the average deviation is larger for the Genie"™"
measurements than for ASEDRA, but the largest average deviation occurs for ASEDRA
at the 70560 second measurement time.

The particular ground truth peaks that Genie™ and ASEDRA are able to locate are
examined. The 4 ground truth peaks that neither program locates, meaning they do not
appear in at least five of the ten measurements, are shown in Table 9. The reason that the
45.30 and 123.07 keV peaks are never located can be attributed to these peaks being very
close in energy, within one percent, to other ground truth peaks, and neither program
resolved these peaks. Additionally, the 756.87 and 1593.00 keV peaks were not found

owing to their small activity as shown in Appendix I.

Table 9. Ground Truth Peaks Never Located by Genie™ or ASEDRA.

) Energy
Nuclide keV)
Eu-155 | 45.30

Eu-154 | 123.07
Eu-154 | 756.87
Eu-154 |1593.00

In addition there are ground truth peaks that one program finds, but the other one
does not locate. Genie™ finds the Eu-155 86.55 keV peak which ASEDRA is never able
to locate and ASEDRA finds the Co-57 122.06 keV and Genie™ is never able to locate
that peak. Genie" is able to discern the Eu-155 86.55 keV peak from the Cd-109 88.03

keV peak and ASEDRA is able to resolve the Co-57 122.06 keV peak from the Eu-152
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121.78 keV peak. This shows that both Genie™ and ASEDRA are able to sometimes
identify peaks that are close together.
To compare the performance of Genie" and ASEDRA, Equation (11) is applied

to both programs at all 19 time measurements and is illustrated in Figure 25.
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Figure 25. Genie™ and ASEDRA Performance.

Figure 25 shows how the performance of both Genie™ and ASEDRA increases
then decreases with measurement time. The performance of Genie™ and ASEDRA
increases up until the 1800 second time measurement. For Genie ' it begins to decrease
until it levels out at the 70560 second measurement. For ASEDRA, the performance
decreases for the remainder of the measurement times, owing to the increasing number of

false positives.
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For the measurement time range of 1 to 300 seconds, the performance parameter
is higher for Genie™ than ASEDRA.. For the 600 to 7200 second measurement time
range, the performance parameter is for ASEDRA is higher than that of Genie" . Lastly
at the 70560 second time measurement, Genie" has a higher performance parameter than
ASEDRA. The largest difference in performance occurs at the 2400 second time
measurement in which the performance of ASEDRA is greater than that of Genie" by
0.42. The smallest difference in performance takes place at the 3 second time
measurement in which Genie™ performs better than ASEDRA by 0.02. For Genie™, the
highest performance parameter is 0.47 and occurs at the 300 second time measurement.
For ASEDRA, the highest performance parameter is 0.52 and occurs at the 1200 second
time measurement.

An additional method of comparing the ability of Genie™ and ASEDRA to locate
peaks is to use Receiver Operating Characteristic (ROC) curves. These ROC curves plot

the percentage of false positive peaks located, (representingl — S, where S is selectivity),

against the percentage of true positive peaks located, sensitivity. The area under the curve
becomes greater as the performance increases, maximizing the positive peaks and
minimizing the false positive peaks. The ROC curve shown in Figure 26 is for each of the

nineteen measurement times for both Genie" and ASEDRA.
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Figure 26. Receiver Operating Characteristic (ROC) Curve for ASEDRA and Genie™.

The ROC curve illustrates a larger area under the curve for Genie™ versus ASEDRA,
which indicates that Genie" is better at maximizing the number of positive peaks it
locates while minimizing the number of false positive peaks. Furthermore, it shows that
improvement to ASEDRA requires better location of positive peaks, primarily regarding
the lower energy peaks, as identified in Table 8. ASEDRA Located Peaks based on all
Ten Measurements.

Lastly, another way to compare the two methods is to consider the sum peaks that
either program locates. Sum peaks occur from isotopes that emit multiple cascade
gamma-rays in its decay. It is then possible for both gamma-ray photons from a single
decay to interact and deposit all of their energy into the detector. If enough of these

events occur, a sum coincidence peak will be observable in the spectrum that occurs at an
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energy which corresponds to the sum of the two individual gamma-rays [7]. The sum
peaks were not initially taken into consideration when determining the 31 ground truth
peaks, but with the amount of false positive peaks that were identified in both programs,
it was deemed necessary. Eu-152 was the only Europium isotope examined based on its
activity. Only two sum peaks were investigated, located at 1530 keV and 1650 keV,
based on the probabilities for the coincident emission gamma-rays [24]. The spectra
from all nineteen time measurements, for both Genie™ and ASEDRA, were examined to
determine if either program identified the sum peaks listed above. ASEDRA was able to
identify the 1530 keV peak at the 70560, 7200, and 3600 second time measurements and
never identified the 1650 keV peak. Genie™ was able to identify the 1530 keV peak at
the 70560, 7200, 3600, 3000, 2400, 1800, and 1200 second time measurements and also
was never able to identify the 1650 keV peak. This reduces the possibility that ASEDRA
was misrepresented by identifying “known” peaks as “false peaks” at later times, where
the opposite occurred in the data. However, the inclusion of these peaks as “ground truth”

would change the analysis as presented.
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V. Conclusions and Recommendations

The purpose of this thesis research was to determine if the application of
ASEDRA was able to improve the specificity and sensitivity of spectra collected by the
HPGe detector. This could then be used as a prevention mechanism to identify sources
prior to an event taking place, in the work of nuclear forensics to better identify fission
product gamma peaks in a crowded spectrum, as well as decreasing the amount of time
needed to take a measurement. To determine if ASEDRA provided these improvements,
a spectrum containing 31 known peaks was measured and the average number of positive
and false positive peaks was examined to determine the program performance. These
results were compared to that of the gamma spectroscopy software Genie' , which was
used as a benchmark in this experiment. The performance parameter used in this
research is higher for Genie™ than ASEDRA at measurement times at and below 600
seconds and at 70560 seconds. ASEDRA has a performance parameter higher than
Genie™ at measurement times between 1200 and 7200 seconds.

The performance parameter is able to give an overall assessment of each program,
but it is important to examine how this relates to improvements in specificity and
sensitivity. The highest performance parameter for Genie'" is 0.47 and occurs at the 300
second time measurement and for ASEDRA is 0.52 and occurs at the 1200 second time
measurement as illustrated in Figure 25. It is very important to note that the performance
parameter peaks at different measurement times for Genie' and ASEDRA. This is
significant because the measurement times at which the performance parameters are the

highest demonstrate that very long measurement times are not necessary to maximize the
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performance of either program. Although this does not directly show an increase in the
required measurement time with the application of ASEDRA, it proves that just because a
measurement is taken for a longer time does not mean that it provides better information.
In addition, there is a certain threshold in which the performance of both programs begins
to decrease, even as measurement time is increased. It is also important to examine how
the performance parameter for Genie™ maximizes at a lower measurement time than for
ASEDRA. This can be attributed to the contribution of Genie™ locating more false
positive peaks than ASEDRA at almost every measurement time and the fact that
ASEDRA does not locate lower energy peaks as well as Genie™". The latter seems to be
due to restrictions within the algorithm itself. The identification of sum peaks also gives
some insight into the ability to locate peaks for both programs. By examining the Eu-152
sum peaks, it is clear to see that Genie™ was able to identify the 1530 keV sum peak at
more measurement times than ASEDRA. This can be attributed to the possibility of
important spectral information being stripped away with the application of ASEDRA to
the spectra.

The results clearly show that Genie™ always locates more ground truth peaks than
ASEDRA does as illustrated in Figure 23. The results also show that ASEDRA identifies
fewer false positive peaks than Genie™ does at all but three of the measurement times as
shown in Figure 24. In addition, the performance parameter of Genie™ is higher than
ASEDRA at short measurement times, implying that ASEDRA is not able to provide
additional spectral information at shorter measurement times. This reveals that the

application of ASEDRA does not offer any improvement to the measurement time
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required to gain adequate spectral information. Furthermore, at longer times, ASEDRA
may be representing numerical noise that results in added false positive peaks.

The results, relating to the ground truth peaks that each program is able to locate,
provide information needed to draw conclusions concerning improvements in resolution.
ASEDRA is able to resolve the Eu-152 121.78 keV and Co-57 122.06 keV peaks at three
of the short measurement times, but can never resolve the Eu-155 86.55 keV and 88.03
keV peaks. On the other hand, Genie™ can resolve the Eu-155 86.55 keV and 88.03 keV
peaks at five of the longer measurement times, but is never able to resolve the Eu-152
121.78 keV, Co-57 122.06 keV and 123.07 keV peaks. This demonstrates that applying
ASEDRA to the experimental spectra does not bring about an improved accuracy as
compared with that of Genie™".

The application of ASEDRA to experimental spectra does not provide any
improvements in specificity and sensitivity, as compared to Genie™. With this being
said, at longer measurement times ASEDRA was able to better identify ground truth
peaks, while minimizing the location of false positive peaks, than Genie™. This
demonstrates that the performance of ASEDRA is better than that of Genie™ for longer
measurement times, based on the performance parameter. Additionally, ASEDRA found
fewer false positive peaks than Genie™ at all but three measurement times. This shows
that the application of ASEDRA is superior in not identifying false positive peaks as
compared to the application of Genie™. Therefore there is potential for improvements
that may make this use of ASEDRA appropriately applicable for use with HPGe

detectors.
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Recommendations for future work would first include changes to the DRFs. The
DRFs used in this experiment were created for energies of every 50 keV, based on the
specifications of ASEDRA being written for its initial application with Nal(Tl) detectors.
The use of DRFs at energies of every 1 keV would better fit the application of the HPGe
at low and high energies, where the linear interpolation fit reduces applicability fo the
DRFs. It is not known how this may affect the overall response, but has significant
potential in the lower energy region, where stripping has already increased inaccuracies
from numerical and statistical noise dominates. This is further exacerbated in this study
because the resolution of the HPGe detector is less than 2%, whereas for a Nal(Tl)
detector it is in the range of 5-10 %.

Other recommendations pertain to the actual research data set. This problem was
made difficult owing to the significant difference in the way ASEDRA and Genie present
the results. Taking more than 10 measurements at the 19 different measurement times
may provide a more accurate assessment of the peaks that are located as well as present
less variation in the experimental measurements. Also developing a metric for the
certainty of Genie" or ASEDRA locating a peak instead of just whether either program
finds a peak at least half of the time may be useful, but would require information about
the fitting process and accuracy of the fit for each peak in ASEDRA. This would offer
more quantitative data regarding how Genie™ and ASEDRA compare.

Lastly, including the sum peaks in the DRFs would remove statistical noise when

the source produces coincident decays. Both Genie" and ASEDRA identified several
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false positive peaks at longer measurement times suggesting potential sum peaks from

coincident events.
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Appendix A. Multi-Nuclide Certificate of Calibration File

===
& |sotope Products

Laboratories

An Eckert & Ziegler Company

24937 Avenue Tibbitts
Valencia, California 91355

Tel 661:309-1010

Fax 661-257-8303

-/

CERTIFICATE OF CALIBRATION
MULTINUCLIDE STANDARD SOURCE

Customer: WRIGHT PATTERSON AFB
P.O. No.: IA3206PS217/VISA
Catalog No.: GF-ML

Physical Description:

A. Capsule type:
B. Nature of active deposit:
C. Active diameter/volume
D. Backing:
E. Cover:
Gamma-Ray Nuclide
Energy (keV)
60 Am-241
88 Cd-109
122 Co-57
166 Ce-139
279 Hg-203
392 Sn-113
514 Sr-85
662 Cs-137
898 Y-88
1173 Co-60
1333 Co-60
1836 Y-88

Method of Calibration:

This source was assayed using gamma ray spectrometry.

Notes:

D (25.4 mm OD x 6.35 mm THK)

Source No.:
Reference Date:
Contained Radioactivity:

Evaporated metallic salts

5 mm
Epoxy
Acrylic

Half-life

432.17 £ 0.66 years
462.6 £ 0.7 days
271.79 £ 0.09 days
137.640 + 0.023 days
46.595 + 0.013 days
115.09 + 0.04 days
64.849 + 0.004 days
30.17 £ 0.16 years
106.630 + 0.025 days
5.272 £ 0.001 years
5.272 £ 0.001 years
106.630 + 0.025 days

Branching
Ratio (%)

36.0
3.63
85.6
79.9
81.5
64.9
98.4
85.1
94.0
99.86
99.98
99.4

- See reverse side for leak test(s) performed on this source.
- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability
for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference

Materials {as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA-TECDOC-619, 1991.
- Overall uncertainty is calculated at the 99% confidence level.
- This source has a working life of 1 year.

uality Control

Medical Imaging Laboratory
24937 Avenue Tibbitts

Valencia, California 21355

IS0 9001 CERTIFIED

[J’-—Dc,r-oé

Date

1217-4-2

1-Nov-06 12:00 PST

1.028 nCi  38.04 kBq
Activity Gammas Total
(nCi) per second Uncert.
0.02839 378.2 33%
0.4102 550.9 31 %
0.01582 5011 32%
0.02069 611.7 32%
0.06115 1844 3.0%
0.08478 2036 31 %
0.09881 3597 3.0%
0.07009 2207 31 %
0.1595 5547 3.0%
0.07905 2921 31 %
0.07905 2924 31 %
0.1595 5866 3.0%

IPL Ref. No.:

1217-4

1800 North Keystone Street

Industrial Gauging Laboratory

Burbank, California 91504
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Appendix B. Na-22 Certificate of Calibration File

===
@ |sotope Products
Laboratories

An Eckert & Ziegler Company

24937 Avenue Tibbitts
Valencia, California 91355

Tel 661-309:1010
Fax 661-257-8303 /[ o7

CERTIFICATE OF CALIBRATION
GAMMA STANDARD SOURCE

Radionuclide: Na-22

Half-life: 950.8 + 0.9 days
Catalog No.: GF-022-M
Source No.:  971-28-2

Physical description:

. Capsule type:

. Nature of active deposit:
. Active diameter/volume:
. Backing:

Cover:

moom»

Radioimpurities:
None detected

Method of Calibration:

Customer: AIR FORCE INSTITUTE OF TECHNOLOGY/ENP
P.O. No.: I1A3003P084

Reference Date: 15-Feb-03 12:00 PST

Contained Radioactivity: 0.8796 nCi 32.55 kBq

M (25.4 mm OD x 3.18 mm THK)
Evaporated metallic salt

3mm

9.23 mg/cm? kapton

0.254 mm aluminized mylar

This source was assayed using gamma ray spectrometry.

Peak energy used for integration:
Branching ratio used:

Uncertainty of Measurement:
A Type A (random) uncertainty:
B. Type B (systematic) uncertainty:
C. Uncertainty in aliquot weighing:

D. Total uncertainty at the 99% confidence level:

Notes:

1275 keV
0.9994 gammas per decay

08 %
3.0 %
0.0 %
31 %

+ H H I+

- See reverse side for leak test(s) performed on this source.

- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability
for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference
Materials (As in NRC Regulatory Guide 4.15).

- Nuclear data was taken from IAEA-TECDOC-619, 1991

- This source has a working life of 5 years.

Ty et

2l Jan 03
Qujality Control Date Signed IPL Ref. No.: 971-28
— 150 9001 CERTIFIED
Medical Imaging Laboratory Industrial Gauging Laboratory
24937 Avenue Tibbitts  Valencia, California 91355 1800 North Keystone Street  Burbank, California 91504
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Appendix C. Eu-152 Certificate of Calibration File

24937 Avenue Tibbitts
Valencia, California 91355

e
@ |sotope Products
Laboratories

T 1O

Tel 661-309-1010
Fax 661-257-8303

CERTIFICATE OF CALIBRATION
GAMMA STANDARD SOURCE

An Eckert & Ziegler Company

Radionuclide:  Eu-152 Customer: AIR FORCE INSTITUTE OF TECHNOLOGY/ENP
Half-life: 4933 + 11 days P.O. No.: 1A3204PS105/VISA K. POPE

Catalog No.: GF-152-D Reference Date: 15-Dec-04 12:00 PST

Source No.: 1075-88 Contained Radioactivity: 10.14 uCi 3752 kBq

Physical Description:
A. Capsule type:
Nature of active deposit:
. Active diameter/volume:
. Backing:
. Cover:

mooOow

D (25.4 mm OD x 6.35 mm THK)
Evaporated metallic salt

5mm

Epoxy

Acrylic

Radioimpurities:
Eu-154 = 0.736% on 15-Dec-04
Method of Calibration:
This source was assayed using gamma ray spectrometry.

Peak energy used for integration:
Branching ratio used:

344.3 keV
0.266 gammas per decay

Uncertainty of Measurement:
. Type A (random) uncertainty:

A + 05 %
B. Type B (systematic) uncertainty: + 30 %
C. Uncertainty in aliquot weighing: + 00 %
D. Total uncertainty at the 99% confidence level: + 30 %

Notes:

- See reverse side for leak test(s) performed on this source.

- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability
for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference
Materials (as in NRC Regulatory Guide 4.15).

- Nuclear data was taken from IAEA-TECDOC-619, 1991.

- This source has a working life of 5 years.

M e

223 Noy 04

Quality Control

Date IPL Ref. No.: 1075-88

Medical Imaging Laboratory
24937 Avenue Tibbitts

Valencia, California 91355

150 5001 CERTIFIED ——8M 8 8 ™ ™

Industrial Gauging Laboratory

1800 North Keystone Street  Burbank, California 91504
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Appendix D. Sample MCNP DRF Input File

Tosha EXPERIMENT INPUT DECK

¢ Detector Response Function

¢ 1.1 billion particles

c cell cards for detector

16-1.05(7-821-11):(11-10-8):(27 -21 7 -9) IMP:p 1 $ shore70 cover

2 3-2.699 (30 -27 -7):(27 -12 6 -7):(12 -11 -7) IMP:p 1 $ end cap
33-2.669 (20 -19 1 -5):(19 -14 4 -5):(14 -13 -5) IMP:p 1 $ mount cup
7000 8 -8 (5-7000 20 -13) IMP:p 1 $ SS

45-2.34(18-17 1-2):(17 29 -28) IMP:p 1 $ Boron contact layer
54-534(18-16 3 -4):(-26 15 -14):(26 -4 25 -24 16 -14) IMP:p 1 $ Li
61-5.3234 (18 -17 2 -3):(17 -16 -3 28):(16 -15 -26):(-25) IMP:p 1 $HpGe
70 (16 -14 24 -4 26) IMP:p 1 $vacuum space

80 (-29):(18 -17 -1):(19 -18 -4):(20 -12 7000 -6):(5 -7000 13 -12) IMP:p 1
90 (13-12-5):(20 -19 -1):(-20 27 -6) IMP:p 1

C detector box

103-2.669 (30 -27 33-3539-377) IMP:p 1

11 3-2.669 (-30 31 39 -37 33 -34) IMP:p 1

12 3-2.669 (-30 31 39 -37 36 -35) IMP:p 1

13 3-2.669 (31 -30 34 -36 -37 38) IMP:p 1

14 3 -2.669 (31 -30 34 -36 -40 39) IMP:p 1

15 3-2.669 (32 -31 33 -3539 -37) IMP:p 1

16 2 -.001225 (-30 31 40 -38 34 -36) IMP:p 1

c concrete floor

600 13 -2.2505 (80 -60 50 -51 70 -71) IMP:p 1

c inside air box

22 0 (-50:51:71:-70:61:-80) IMP:p 0

500 2 -0.001225 (10 -51 70 -71 60 -61) IMP:p 1

501 2 -0.001225 (21 -10 70 -71 60 -61 8):(27 -21 70 -71 60 -61 9) IMP:p 1
¢ 502 2 -0.001225 (27 -21 70 -71 60 -61 9) IMP:p 1

503 2 -0.001225 (50 -27 70 -71 60 -61) #10 #11 #12 #13 #14 #15 #16 #2 IMP:p 1
c end of cell cards

¢ beginning of surfaces

c cylinders

1 CX .45000 $ coaxial hole (vacuum)
2 CX .45003 $ boron

3 CX 2.4650 $ HPGe

4 CX 2.5000 $ Lithium

5CX 2.6500 $ Al

7000 cx 2.688 $ SS

6 CX 3.6500 $ Vacuum

7 CX 3.8000 $ Al
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8 CX 4.2699 $ Shore70elastomer
9CX556998""

c detector planes (dim. out to end)

10 PX 0.0001 $Shore70elstomer

11 PX -.2686 $ Al

12 PX -.3686 $ Vacuum

13 PX -1.3686 $ Al

14 PX -1.4686 $ Lithium

15 PX -1.5036 $ HPGe end

16 PX -2.2686 $ HPGe to round edge

17 PX -3.4186 $ HPGE top of hole before radius
18 PX -4.4686 $ HPGe bottom of crystal
19 PX -6.1486 $ start Vacuum below crystal
20 PX -6.4686 $ Al mount cup base

21 PX -6.4592 $ Shore70elastomer lip
27 PX -7.0358

¢ misc. detector parameters

24 TX -2.2686 00 1.7 .8 .8 $ Li torus

25 TX -2.2686 00 1.7 .765 .765 $HPGe torus
26 CX 1.7 $ torus cutoff cylinder

28 SX -3.4186 .45003 $ sphere radius end of coax HPGE
29 SX -3.4186 .45000 $ Boron radius

c detector case planes

30 PX -7.239 $ inside of front face

31 PX -35.6616 $ inside of back face

32 PX -35.8648 $ outside of back face
33 PZ -14.8000 $ outside bottom

34 PZ -14.5968 $ inside bottom

35 PZ 10.55 $ outside top

36 PZ 10.3468 $ inside top

37 PY 6.2992 $ outside left side

38 PY 6.0960 $ inside left side

39 PY -6.2992 $ outside right side

40 PY -6.0960 $ inside right side

¢ Room planes

50 PX -131.5

51 PX 1315

60 PZ -16.2

61 PZ 288.8

70 PY -131.5

71PY 1315

80 PZ -46.2

c end of surface
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MODE P

SDEF ERG=D1 Par=2 POS=50.00 0 0 RAD=D2

S120.00.15

SI1 L 0.020 $ energy dist.

SP1 D 1.00 $ energy prob.

F8:P 6 $ dep. in cell

e8 0.00 1.5 0.0013198i3.200 3.30

M1 32000.04p 1 $ HPGe

M2 7000. 0.755636 8000. 0.231475 18000. 0.012889 $air

M3 13000.04p 1 $ Al

M4 3000.04p 1 $ Li

M5 5000.04p 1 $ Boron

M6 1000. -0.143711 6000. -0.856289 $Polyethylene

M7 82000.04p 1 $ Lead

M8 6000. 0.0003 14000. 0.005 15000. 0.000225 16000. 0.00015 &
24000. 0.19 25000. 0.01 26000. 0.701825 28000. 0.0925 $ ss-304
M9 29000. 1 $Copper

¢ M10 48000. 0.1 50000. 0.133 82000. 0.267 83000. 0.5 $CerroBend
¢ M11 1000.04p 0.258 6000.04p 0.172 17000.04p 0.570 $ PVC
M12 48000.04p 1 $ Cd

M13 1000.04p 0.0847636 8000.04p 0.604086 11000.04p 0.0094725 &
12000.04p 0.00299826 13000.04p 0.0248344 14000.04p 0.24186 &
19000.04p 0.00685513 20000.04p 0.0204808 &

26000.04p 0.0046495308 $ Los Alamos Concrete

PRINT

dbcn j j 1 100 100000

CUT:P

NPS 1.1E+09
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Appendix E. Cd-109 Certificate of Calibration File

24937 Avenue Tibbitts
Valencia, California 91355

o)
@ |sotope Products

Laboratories
Tel 661:309-1010

An Eckert & Ziegler Company Fax 661:257-8303

CERTIFICATE OF CALIBRATION
GAMMA STANDARD SOURCE

Radionuclide:  Cd-109 Customer: AIR FORCE INSTITUTE OF TECHNOLOGY
Half-life: 462.6 + 0.7 days P.0. No.: IA3006PD59

Catalog No.: GF-109-M Reference Date: 1-Mar-06 12:00 PST

Source No.: 1169-14-2 Contained Radioactivity: 100.4 pCi 3715 kBq

Physical Description:

. Capsule type:

. Nature of active deposit:
. Active diameter/volume:
. Backing:

. Cover:

moowl»

Radioimpurities:

M (25.4 mm OD x 3.18 mm THK)
Evaporated metallic salt

3 mm

9.23 mg/cm?* kapton

0.254 mm aluminized mylar

Zn-65 < 0.0001%; Sb-124 = 0.00019% on 1-Mar-06

Method of Calibration:

This source was assayed using gamma ray spectrometry.

Peak energy used for integration:

Branching ratio used:

Uncertainty of Measurement:

88.0 keV
0.0363 gammas per decay

A. Type A (random) uncertainty: + 08 %
B. Type B (systematic) uncertainty: + 30 %
C. Uncertainty in aliquot weighing: t 00 %
D. Total uncertainty at the 99% confidence level: + 31 %

Notes:

- See reverse side for leak test(s) performed on this source.

- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability
for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference
Materials (as in NRC Regulatory Guide 4.15).

- Nuclear data was taken from IAEA-TECDOC-619, 1991,

- This source has a working life of 2.5 years.

&-fFep 06

uality Control Date IPL Ref. No.: 1169-14

IS0 9001 CERTIFIED

Medical Imaging Laboratory
24937 Avenue Tibbitts

Industrial Gauging Laboratory

Valencia, California 91355 1800 North Keystone Street  Burbank, California 91504
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Appendix F. Co-57 Certificate of Calibration File

24937 Avenue Tibbitts ——

o]
= |SOtope PrOdUCtS Valencia, California 91355 / J L PZ
- )

Laboratories
Tel 661-309-1010
An Eckert & Ziegler Company Fax 661-257-8303

CERTIFICATE OF CALIBRATION
GAMMA STANDARD SOURCE

Radionuclide:  Co-57 Customer: AIR FORCE INSTITUTE OF TECHNOLOGY/ENP
Half-life: 271.79 £ 0.09 days P.O. No.: IA3006PD33/VISA/J POLLARD

Catalog No.: GF-057-M Reference Date: 1-Jan-06 12:00 PST

Source No.: 1151-41-2 Contained Radioactivity: 52.F1 nCi 1950 kBq

Physical Description:

A. Capsule type: M (25.4 mm OD x 3.18 mm THK)
B. Nature of active deposit: Evaporated metallic salt

C. Active diameter/volume: 3 mm

D. Backing: 9.23 mg/cm? kapton

E. Cover: 0.254 mm aluminized mylar

Radioimpurities:

Co-56 = 0.0370%, Co-58 = 0.00743% on 1-Jan-06
Method of Calibration:

This source was assayed using gamma ray spectrometry.

Peak energy used for integration: 122.1, 136.5 keV
Branching ratio used: 0.8560, 0.1068 gammas per decay

Uncertainty of Measurement:

A. Type A (random) uncertainty: + 02 %
B. Type B (systematic) uncertainty: + 30 %
C. Uncertainty in aliquot weighing: + 00 %
D. Total uncertainty at the 99% confidence level: + 30 %

Notes:

- See reverse side for leak test(s) performed on this source.

- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability
for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference
Materials {as in NRC Regulatory Guide 4.15).

- Nuclear data was taken from IAEA-TECDOC-619, 1991,

- This source has a working life of 18 months.

]/ Mh z-Dec-05

Quality Control Date IPL Ref. No.: 1151-41

1SO 9001 CERTIFIED

Medical Imaging Laboratory Industrial Gauging Laboratory
24937 Avenue Tibbitts Valencia, California 91355 1800 North Keystone Street  Burbank, Califernia 91504

79




Appendix G. Sb-125, Eu-154, and Eu-155 Solution Certificate of Calibration File

aimerce
ige

T oAl

National Burean of Standards

@ ertificate
Standard Reference Material 4276

MIXED-RADIONUCLIDE SOLUTION STANDARD
for the
EFFICIENCY CALIBRATION OF GERMANIUM-SPECTROMETER SYSTEMS

landards
rector

Antimony-125-Tellurium-125m
Europium-154
Europium-155

Source identification SRM 4276- 73

Source description Liquid Zn NBS borosilicate-glass
ampoule
Solution composition 30 pg Sb*3 and 30 ug Eu*d per gram of

4 M hydrochloric acid
Mass \5%9

Reference time 1200 EST May 1, 1981

This standard is intended for use in measuring the full-energy-peak efficiencies
of spectrometer systems for x and gamma rays from 27 to 1274 keV, provided that
the responses to radiations approximately 5 keV apart can be resolved. Emission
rates are specified at 18 energies for photon radiations from a mixture of anti-
mony-125-tel lurium-125m, europium-154, and europium-155. Uncertainties are esti-
mated and combined at a level corresponding to a standard deviation of the mean,
with the intent that the user can propagate this uncertainty along with other un-
certainties in the spectrometer calibration.

Table 1 gives the energies, emission rates, and uncertainties for selected radiat-
ions. A footnote indicates how emission rates will change with time. If there are
any changes in measured emission rates that would correspond to an emission rate
0.5 percent different from that calculated from Table 1, or in measured half lives
that would cause a corresponding difference after five years, notification will be
sent to purchasers of the standard.

Table 2 lists the estimates of component uncertainties which have been combined
in quadrature to give the total uncertainty in each emission rate.

Notes on the use of this standard are appended. One of the tables in the supple-
mental notes gives relative emission rates for radiations close in energy to the
certified radiations; for spectrometer systems of poorer resolution, it may be
necessary to use a combined emission rate for some multiple peaks.

This Standard Reference Material was prepared in the Center for Radiation Research
Nuclear Radiation Division, Radioactivity Group, D.D. Hoppes, Group Leader.
Washington,D.C. 20234 George A. Uriano, Chief

June, 1981 O0ffice of Standard Reference Materials

*Footnotes on pace 4
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- /-r { pite )¢ ¢ |77 TABLE'L «
gl S [ 2o [ 45550y

X-Ray and Gamma-Ray Energies, Emission Rates per Gram of Solution (?),

and Uncertainties for Standard Reference Material 4276,

ares] puilicy LA

Photon Emission Rate per Gram

Energy (x s-1g-1) or (ys-lg-1) ,:/| Total Estimated
Radionuclide (kev) 1200 EST May 1,1981 * 707 Uncertainty (%)
125gp_125m7e By, 2744 6.53 x 103 = 445T1L3
154, 155y Ky, 42.8 4.06 x 103 ‘& ' 1.8 o
155¢, 86.6 2.01 x 103 T GTHh 0.8
155g, 105.3 1.389 x 103 # , Lo 1.1 |
154g, 123.1 5.92 x 103 | S gy ,V/ .
125gh 176.4 7.16 x 102 © T 0,65
154, 248.0 noos x 103 S 17T o
125gp 380.5 1.587 x 102 - - ~J e ho.8
125y, 427.9 3.11 x 103 - : L6571 0.7
1255p 463.4 1.094 x 103 " N 3F55 0.7
154g 591.7 7.8 x 102 " S 0.6
125}, 600.6 1.848 x 103 ' e .8
125gy, 635.9 1.181 x 103 '~ ' 0.6
154gy T 7233 2.92 x 1037 B 0.6
154, 873.2 1.771 x 103 © et 0.7
154g, 996.4 1.516 x 103 856 1.0
154g,, 1004.8 2.63 x 103 07
| 154ey 1274.4 5.06 x 103 ' 0.6

*Emission rates at later times can be calculated using the decay constants in foot-
note (3). For the 42.8-keV Gd K, x rays, the emission rate Nt 1s given by

-4 -4
')A Np = Ng x 0.71673 e-2-235 x 10 't x [1 + 0.39523 e~1.777 x 10 1],

\

where Ng is the emission rate given above and t is the time in days from 1200 EST
May 1, 1981.

**Estimated total uncertainties have the significance of one standard deviation of
the mean. Components of these estimates are given in Table 2.

(2)
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TABLE 2

Estimates of the Component Uncertainties for
Photon-Emission-Rate Values for SRM 4276

TYPICAL UNCERTAINTY COMPONENTS (%)

Number
Photon of Std. Dev. Peak Pile-up Overall |
Energy Determi- of the Effici- Analy- Compen- Geome- N Uncer-**
(keV) nations Mean ency sis sation try Other tainty
27 .4 6 0.3 1.0 0.7 0.3 0.1 0.2 1.31
42.8 6 0.06 1.0 0.7 0.1 0.1 0.5 1.3
86.6 6 0.12 0.65 0.3 0.1 0.1 0.05 0.74
105.3 6 0.09 1.0 0.3 0.1 0.1 0.05 1.1
123.1 6 0.08 0.6 0.4 0.1 0.08 0.05 0.74
176.4 6 0.09 0.5 0.2 0.2 0.1 0.05 0.59
248.0 6 0.04 0.5 0.3 0.1 0.08 0.05 0.60
380.5 6 0.36 0.7 0.2 0.2 0.08 0.05 0.84
427 .9 6 0.23 D7 0.2 0.2 0.08 0.05 0.79
463.4 7 0.22 0.58 0.2 0.2 0.08 0.05 0.69
591.7 ) 0.12 0.45 0.3 0.1 0.08 0.05 0.57
600.6 7 0.20 0.42 0.4 0.2 0.08 0.05 0.65
635.9 6 0.19 0.42 0.2 0.2 0.08 0.05 0.55
723.3 6 0.05 0.54 0.2 0.1 0.08 0.05 0.59
873.2 5 0;12 0.63 0.3 0.1 0.08 0.05 0.72
996.4 5 0.11 0.54 0.75 0.1 0.08 0.05 0.94
1004.8 5 0.06 0.54 0.4 0.1 0.08 0.05 0.69
1274 .4 5 0.06 0.45 0.1 0.1 0.08 0.05 0.48

*Includes contributions for the half lives for the Te x ray, for the decay schemes
for the Gd x ray, as well as source preparation uncertainties.

**Components of the uncertainty have been added in quadrature.

uncertainty for a typical detector, and some of the values are slightly greater
than those given in the last column on Table 1.

(3)

This is the overall
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FOOTNOTES FOR SRM 4276

(1) Approximately five milliliters of solution. Ampoule specifications:

body diameter 16.5 + 0.5 mm
wall thickness 0.60 + 0.04 mm
barium content less than 2.5 percent
lead oxide content less than 0.02 percent
other heavy elements trace quantities

(2) These values are based on gamma-ray spectrometry measurements made at the
National Bureau of Standards, which are described in the reference: B.M.
Coursey, D.D. Hoppes, and F.J. Schima, "Determination of the Photon Emis-

sion Rates of the NBS Long-Lived Mixed-Radionuclide Standard", in Proc.
Fifth Symp. X- and Gamma-Ray Sources and Applications, June 10 - 12, 1981,
Ann Arbor, Michigan. To be published in Nuclear Instruments and Methods.

(3) The NBS-measured half-life values and computed decay constants are:

Half Life Decay Constant
1255p 2.75 + 0.02 years 6.901 x 10-% days-1
" 154y 8.49 *+ 0.11 years 2.235 x 10-4 days-!
155gy 4.73 + 0.03 years 4.0122x 10-4 days-!
{ / e 'd F '._( 23 o
' { »
- - \ r"‘a\'-"'
4 i i /
159 El
(4)
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Appendix H. Spectra from One Set of Measurements
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Appendix I. Probability per Decay of Source Gamma Lines

Eu-152 lines (keV) Probakility/Decay
4540 1.460E-01
121.78 Z2.840E-01
244 89 7. 490E-02
344 27 2 B850E-01
411.11 2.210E-02
44393 2 .810E-02
778.89 1.270E-01
867.32 4 1680E-02
964.01 1.440E-01
1085.80 9 960E-02
1089.70 1.680E-02
1112.00 1.330E-01
1212.80 1.380E-02
129900 1.610E-02
1408.00 2 .080E-01
Eu-154 lines (keV) Probakility/Decay
123.07 4 050E-01
24794 6.600E-02
692 41 1.690E-02
723.30 1.970E-01
756.87 4 330E-02
873.19 1.150E-01
995 32 1.030E-01
1004.80 1.790E-01
1274.50 3.550E-01
1583.00 1.030E-02
1586.50 1.850E-02
Eu-155lines (keV) Probakility/Decay
45.30 1.290E-02
86.54 3.090E-01
Co-57 lines (keV) Probability/Decay
122.06 8.560E-01
136.48 1.070E-01
Cd-109 lines (keV) Probakility/Decay
88 04 3 R10E-02
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Appendix J. Sample Genie™ Peak Analysis Report

Feak Analysis Report

4,/3/2009

3:26:44 PM

Page

1

R R R R R R R R R R R R R R R R R R R R R R R R R R A R A R A R A R RN R R R RN R RN R R R R R R R R R R R R R R

ANALY SIS

R R R R R T R T R T T R T R T T T T N R R R R R R R R R R R R R R R

WO OR R

Configuration Title:
Spectrum Title:
Peak Analysis performed on:
Peak Analysis From Channel:
Peak search sensitivity:

STANDARTED

Max Iterations: 10

Pk IT Energy
1 0 39,686
2 0 45,44
M3 4 64, 62
m 4 4 68. 88
M 5 7 83.47
m & 7 88,07
70 121,84
& 0 136.48
M9 10 245,10
m 10 10 248,27
11 0 296,37
12 0 344,68
13 0O 368. 27
14 0 411. 67
15 0 444,41
1a 0O 488,28
17 0 564.79
18 0O 586. 26
19 0  680.45
20 0 690.14
21 0 724,25
22 0 779,58
23 0 868,02
24 0 877.47
2% 0 954, &7
26 0 1006.15
M 27 9 1088, 56
m 28 9 1090.62
29 0 1112.75
0 0 1214.32
31 0 1275.82
32 0 1300.15
33 0 1408.81
M 34 3 1528.42
m 35 3 1530.09
M = First peak
m = Other peak
F = Fitted singlet

in a multiplet region
in a multiplet region

Errors guoted at

Use Fixed FWHM: No
Peak Fit Engine Name: NDSTD

Area

09
738
472
1609
1523
15901
670589
49449
5247
24
294
12259
403
827
1145
132
167
125
68
108
a7
2482
T
223
2363
180
1449
289
1901
141
147
173
2274
28
23

1.000 sigma

VoM

5 FEAK

Bkgnd

5030
4347
6214
8168
10871
13529
11036
5657
1317
811
1427
1267
836
826
703
702
568
609
530
538
472
526
483
6589
393
218
134
135
272
1490
76
41
40

0

0

REPORT

10decO&_20min_-FCNVT [NEWORTEC]

473,
38

09

3.30

Fit Sing1ets:
FwHM Reject:

MO
MO

3:26:44 PM
To Channel:
Gaussian sensitivity: 15.00
Critical Level Test:

FWHM Reject Ratio:

§192

continuum Type: STEP

FwHM Channel

.01
.73
.49
.38
. 64
.23
41
.37
.45
.48
.42
.48

.62
.62
.54
.95
17
.61
.75
.B1
.73
.92
.33
.74
.08
.13
.37
.93
.01
. 37
.95
.05
.75
.15

[FRIEEN N ol NN el T Sl S ol s o el ol G el el el el el el el el S NE N TN NE Y o N

108.
123.
181.
188,
227.
240.
332.
372.
669,
678.
g10.
942,
1006.
1125,
1215.
1335.
1544,
1603,
1860,
1887,
1980.
2131.
2373,
2399,
2638,
2751,
2971,
2982.
3043,
3321.
3489,
3555.
3853.
4180,
4184,

o7
&7
&1
00
89
48
g4
&9
99
65
24
38
&9
&0
14
15
41
15
76
34
57
g4
&1
66
73
65
59
68
23
03
24
79
o1
18
73

Left

101
116
172
172
217
217
319
362
659
659
799
929
9495
1114
1203
1329
1531
1594
1848
15874
1972
2119
2364
2384
2622
2739
2951
2951
3025
3306
3477
35345
35834
4163
4163

P

14
17
27
27
48
48
28
22
24
24
22
26
25
25
24
23
26
20
18
19
1a
26
21
38
37
21
43
43
32
25
25
23
33
28
28

e Ll el e N e e e e N R e R e e O Y e = R

cts/sec

. 3E-00L
L ZE-00L
LOE-001
LAE+000
. 3E+000
. 3E+001L
. TE+00L
L ZE+000
AE+000
LOE-002
. SE-001
LOE+001
LA4E-001
LOE-00L
. TE-00L
L1E-001
LAE-00L
L1E-001
. 7E-002
L1E-002
. 2E-002
1E+000
L TE-00L
L9E-001
. OE+000
. 3E-00L
L ZE+000
LA4E-001
. BE+000
L 2E-00L
L Z2E-00L
. 3E-00L
. 9E+000
. 2E-002
.9E-002

0.

MO

0o

err

24,
14.
32.
11.
14,

Fud =

[un
= 4
=l e L B O

LN
1
6 B B Bl 0D D 0 S w e R 0 S S e g bl e e B B b D S n S B R R

wOR W OR R

n
i
—

[ Q]
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Appendix K. Sample ASEDRA Peak Analysis Report

OFRRNNWWEARONOORRRRPRR R R

.4088E+03
. 2999E+03
.2754E+03
.2139E+03
.1127E+03
.0900E+03
.0867E+03
.0056E+03
.6497E+02
.6809E+02
. 7961E+02
.8931E+02
.4435E+02
.1145E+02
.6831E+02
.4455E+02
.9629E+02
.4510E+02
.3652E+02
.2189E+02
. 7890E+01

NNRRNBRBRNNRORUVUEANBRERNR WS

.8830E+02
.4361E+01
.6580E+01
.1530E+01
.6082E+02
.5111E+01
.8925E+02
.1037E+01
.5661E+02
.2547E+02
.4534E+02
.6881E+01
.9485E+02
.3201E+02
. 2896E+01
.1819E+03
.9479E+01
.1973E+03
.4412E+03
.4358E+04
.3293E+03
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